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Abstract  
 
The adjacency effect (AE) alters the top-of-atmosphere signals of coastal and inland waters, and 
it poses a major challenge for remote sensing of nearshore aquatic environments. To address this, 
we developed a Monte Carlo-based 3D radiative transfer model to study the AE, validated its 
accuracy against existing codes, and conducted case studies to demonstrate its application in 
analyzing the impact of AE in custom environments. In addition, we introduced a methodology 
and code for AE correction and demonstrated significant improvements in satellite-derived 
water-leaving reflectance retrievals using globally distributed in situ reflectance measurements. 
The tool, named T-Mart, is open-source and publicly available (https://github.com/yulunwu8/tmart). 
We applied AE correction and evaluated the performance and limitations of satellite-based water 
quality retrievals in small rivers traversing agricultural lands in Eastern Ontario, Canada. 
Satellite-derived reflectance and water quality parameters were validated against in situ 
measurements collected from May to October 2023. In the South Nation River and the Ottawa 
River, turbidity can be reliably monitored. Despite the improved retrievals through AE 
correction, further work is required to accurately monitor coloured dissolved organic matter and 
chlorophyll-a. While the findings highlight the complexities of satellite-based water quality 
monitoring applications for small rivers, AE correction represents a crucial step towards more 
accurate aquatic remote sensing of inland waters, laying the groundwork for more refined 
methodologies in future studies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://github.com/yulunwu8/tmart
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Introduction  
 
In optical remote sensing, the adjacency effect (AE) refers to the influence of light reflected by 
adjacent areas on a target’s spectral signal through atmospheric scattering (Tanré et al., 1987). 
The AE occurs when light from nearby objects, such as land and clouds, with a spectral shape 
and magnitude different from the target waterbody, is scattered by atmospheric molecules and 
particles into the path between the target and the sensor, ultimately reaching the sensor. This 
effect modifies the at-sensor radiance observed over the target, reducing the spectral contrast 
between the target and its surrounding area.  
 
At-sensor radiance is the input to atmospheric correction (AC), which in aquatic remote sensing 
describes the conversion of at-sensor radiance into the corresponding sea-level water-leaving 
radiance or reflectance, and this requires accurate estimation of various atmospheric and surface-
reflectance parameters (Mobley et al., 2016). The modified at-sensor radiance from the AE in 
nearshore environments therefore compromises the accuracy of AC. Since the output of AC 
serves as input to bio-optical algorithms that derive aquatic products, such as water turbidity, 
chlorophyll-a (Chl-a) and organic-matter concentrations, bathymetry, and bottom-habitat 
classification (Giardino et al., 2019; Kutser et al., 2020), any error introduced by the AE directly 
affects the quality of these products.  
 
The AE is commonly observed over nearshore waters in the near-infrared (NIR) wavelengths, in 
which adjacent vegetated land is typically much more reflective than water and atmospheric 
scattering is dominated by the strong forward scattering of aerosols (Sterckx et al., 2011). 
Several studies have documented abnormally high NIR reflectance over these waters using 
airborne and spaceborne sensors, attributable to the AE (Kuhn et al., 2019; Odermatt et al., 2008; 
Pan et al., 2022; Reinersman and Carder, 1995; Sterckx et al., 2011). This heightened NIR 
reflectance near vegetative areas can disrupt algorithms used for deriving aerosol optical 
thickness (AOT) in AC, often leading to overestimated AOT and consequently overcorrection of 
surface reflectance in visible wavelengths (Hieronymi et al., 2023). Separating NIR contributions 
from the AE and water itself therefore becomes critical for effective AC and bio-optical 
modelling, especially in highly productive waters with non-negligible reflectance in NIR bands 
(Wang and Shi, 2005). 
 
Despite its significant impacts, the AE is often overlooked in standard AC schemes and 
operational processing of satellite imagery in aquatic remote sensing (Frouin et al., 2019). 
Considering the sensitivity of aquatic remote sensing products to even minor sources of noise, 
the evaluation and correction of AE are essential in advancing aquatic remote sensing from the 
open ocean to nearshore waters (Bulgarelli and Zibordi, 2018). 
 
To address the impact of the AE in remote sensing of nearshore environments, this thesis is 
structured around the following research questions: 

1) How can the AE be accurately characterized for satellite imagery used in nearshore 
aquatic remote sensing?  

2) How can the AE be corrected for to improve the accuracy of nearshore aquatic remote 
sensing products? 

3) To what extent does correcting for the AE improve the accuracy of these products? 
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This thesis is structured in an article-based format, with each chapter designed as a stand-alone 
paper for publication in academic journals. The chapters are outlined as follows: 
 
Chapter 1: AE modelling (Wu et al., 2023) 

• Title: Topography-adjusted Monte Carlo simulation of the adjacency effect in remote 
sensing of coastal and inland waters 

• Co-authors: Anders Knudby, David Lapen 
• Published in Journal of Quantitative Spectroscopy and Radiative Transfer; DOI: 

10.1016/j.jqsrt.2023.108589 
• This chapter presents the mechanisms and example applications of a Monte Carlo-based 

radiative transfer model, T-Mart. The model allows for characterization of the AE in 
custom environments and establishes a framework for AE correction. 

 
Chapter 2: AE correction (Wu et al., 2024) 

• Title: Sensor-generic adjacency-effect correction for remote sensing of coastal and inland 
waters 

• Co-authors: Anders Knudby, Nima Pahlevan, David Lapen, Chuiqing Zeng 
• Published in Remote Sensing of Environment; DOI: 10.1016/j.rse.2024.114433 
• Building on the modelling work, this chapter derives equations for AE correction and 

validates the correction using globally distributed publicly available in situ reflectance 
data. 

 
Chapter 3: AE correction for regional water quality monitoring (in preparation) 

• Title: Accuracy and limitations of optical remote sensing for water quality of small rivers: 
a case study of two rivers in Eastern Ontario, Canada 

• This chapter assesses the impact of AE correction on atmospheric correction for small 
waterbodies, including the South Nation River and the Ottawa River, evaluates 
downstream water quality products, and explores the limitations of aquatic remote 
sensing in the study area.  

 
Note: the published Chapters 1 and 2 follow US spelling, while the rest of the thesis follows 
Canadian spelling.  
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Chapter 1: Topography-adjusted Monte Carlo simulation of 
the adjacency effect in remote sensing of coastal and inland 
waters 
 
Yulun Wua, Anders Knudbya, David Lapenb 
 
aDepartment of Geography, Environment and Geomatics, University of Ottawa, Ottawa, Canada  
bOttawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Canada 
 
Abstract 
 
We present a Monte Carlo radiative transfer (RT) code that simulates the top-of-atmosphere 
(TOA) reflectance of waterbodies considering the adjacency effect. The code is the first open-
source tool that supports modeling of the adjacency effect with arbitrary topography. It uses the 
same atmospheric and aerosol settings as 6S, along with user-input surface reflective properties 
and topography, allowing users to transition from 1D to 3D RT modeling and characterize the 
adjacency effect in their study areas. The calculation of radiometric quantities was validated 
against libRadtran, showing a maximum difference lower than 0.6 % in extreme optical settings. 
Examples of the use of the code are presented in three case studies where modeled and measured 
radiative properties align with each other. One case study shows that 83.7 % of the variance in 
the near-infrared TOA reflectance of 47 lakes in Minnesota was explained by the adjacency 
effect, emphasizing the significance of the adjacency effect to atmospheric correction algorithms 
that use near-infrared bands to retrieve aerosol and glint information. Another case study 
supports the finding of strong wavelength dependence of the effective sea-surface reflectance in 
above-water measurements of remote sensing reflectance. The code will support physics-based 
methods that remove the adjacency effect in atmospheric correction processes, and it has the 
potential to improve satellite-based monitoring of coastal and inland waterbodies. 
 
Keywords: radiative transfer; aquatic remote sensing; adjacency effect; atmospheric correction; 
coastal waters; inland waters 
 
DOI: 10.1016/j.jqsrt.2023.108589 
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1.1 Introduction 
 
In optical remote sensing, the adjacency effect is the distortion of the target’s spectral signal due 
to atmospheric scattering when observing spectrally heterogeneous surfaces. The adjacency 
effect reduces the contrast between neighboring pixels with different reflectances, and it is 
commonly observed in remote sensing of coastal and inland waters where water tends to have a 
lower reflectance than nearby vegetation, especially in the near-infrared (NIR) wavelengths. 
Water can also be subject to adjacency effects produced by nearby sea ice (Bélanger et al., 2007) 
and clouds (Feng and Hu, 2016). 
 
The adjacency effect is detectable on water pixels for common ocean-color sensors for as far as 
36 km from the coast (Bulgarelli and Zibordi, 2018), and is even more significant in remote 
sensing of small inland waterbodies such as rivers where, compared to coastal environments, a 
greater proportion of the neighboring pixels are non-water objects. The adjacency effect often 
leads to failed isolation of the water-leaving portion of the top-of-atmosphere (TOA) reflectance, 
undermining the accuracy of retrieved water properties (Sterckx et al., 2011). While a few 
studies investigated methods that correct for the adjacency effect (Sei, 2015; Sterckx et al., 2011; 
Vermote et al., 1997b), most ocean-color data processors assume a homogenous underlying 
surface (Antoine and Morel, 1999; Mobley et al., 2016). The approach taken by Sei (2015) and 
Vermote et al. (1997b) calculates an azimuthally symmetric point-spread function of the 
environmental radiance of a Lambertian (i.e., isotropically reflecting) surface prior to 
atmospheric correction. This does not apply to off-nadir observations that are common in aquatic 
remote sensing to avoid sun glint; water’s specular reflectance is also not considered in this 
approach. On the other hand, the SIMilarity Environment Correction approach (SIMEC) 
(Sterckx et al., 2011) assumes that water’s spectral shape in the NIR range is stable for a wide 
range of water biophysical properties. SIMEC iteratively removes a small portion of the average 
land reflectance in the scene from the reflectance of water pixels until the pixels follow the 
predetermined spectral shape. However, at least two bands in red-edge and NIR wavelengths are 
required to fit the spectral shape, limiting its application to sensors with such bands. In addition, 
bottom reflectance in shallow waters, extreme turbidity, algal blooms, or sun glint, can 
significantly change water’s reflectance from the predetermined spectral shape, reducing the 
effectiveness of SIMEC. A fully physics-based adjacency-correction method will likely 
overcome these challenges and improve aquatic remote sensing of coastal and inland waters; 
such an approach requires accurate characterization of the adjacency effect through radiative 
transfer (RT) modeling.  
 
Various techniques have been developed to solve RT problems for aquatic applications, such as 
the discrete-ordinate method used in libRadtran (Emde et al., 2016), the successive-orders-of-
scattering method used in 6S (Vermote et al., 1997b) and Zhai et al. (2010), and the invariant-
imbedding techniques used in HydroLight (Hedley and Mobley, 2019). However, when 
considering arbitrary boundary geometry and significant multiple scattering, and with an 
arbitrary distribution of optical properties within the media, these techniques become insufficient 
and Monte Carlo methods often become the only feasible option (Gordon, 1985). It should be 
noted that 6S supports simple adjacency modeling but only for circular and isotopically 
reflecting objects, which does not apply to inland and coastal aquatic remote sensing. To model 
such complex environments, the Monte Carlo approach is used in this study. 
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Bulgarelli et al. (2014) used the Monte Carlo approach to model the adjacency effect in a coastal 
environment. A fixed atmospheric profile with molecular and aerosol optical properties was 
implemented, flat land and water surfaces were assumed, and the wind-induced rough sea 
surface was modeled through an analytical expression.  
 
This study expands Bulgarelli et al. (2014)’s work to include a rich library of atmosphere and 
aerosol profiles from 6S and consider arbitrary three-dimensional (3D) topography to 
characterize coastal environments such as fjords, cliffs, and hilly terrains. The widely used Cox-
Munk wave-slope statistics (Cox and Munk, 1954) were used to characterize water surfaces, and 
arbitrary solar-target-viewing geometry is supported. The RT code was developed in Python and 
was named Topography-adjusted Monte-carlo Adjacency-effect Radiative Transfer code (T-
Mart); it allows RT modeling in a coupled 3D ocean-atmosphere system in diverse 
environmental conditions with arbitrary boundary geometry. The full code and instructions of T-
Mart can be found on https://github.com/yulunwu8/tmart. 
 
This article is structured as follows. Section 1.2 describes the environmental settings and the 
calculations of radiometric quantities in T-Mart, followed by validation of the code’s accuracy in 
Section 1.3. Modeled and measured radiative properties are compared in three case studies to 
further validate and demonstrate the use of the code in Section 1.4, two of which investigate the 
contribution of the adjacency effect and one highlights the surface-reflected light off clear ocean 
water. The case studies and the installation, use, and accuracy of the code are discussed in 
Section 1.5. 
 
  

https://github.com/yulunwu8/tmart
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Table 1.1. Symbols and definitions of radiometric quantities used in this article.  
Symbol Definition Unit 
AOT550 Aerosol optical thickness at 550 nm - 
𝜏!"# Optical thickness for extinction (sum of scattering and absorption) - 
𝜏$%&# Optical thickness for scattering - 
𝜏&'$ Optical thickness for absorption - 
𝑇&'$ Direct transmittance for absorption - 

𝑅 Hemispherical-directional reflectance, ratio of radiance (W sr-1 m-2) 
multiplied by 𝜋 to downwelling irradiance (W m-2) sr-1 

𝑅()* Direct reflectance sr-1 
𝑅!+, Environmental reflectance  sr-1 
𝑅&#- Atmospheric intrinsic reflectance  sr-1 
𝑅$.*/ Reflectance of land or water surface sr-1 
𝑅0&#!* Reflectance of water (surface and water-leaving) sr-1 
𝑅12)+# Reflectance of sun glint and sky glint sr-1 

𝜌 Bihemispherical reflectance, ratio of upwelling irradiance (W m-2) 
to downwelling irradiance (W m-2) - 

𝜌$.*/ Reflectance of land or water surface - 
𝜌0&#!* Reflectance of water (surface and water-leaving) - 

𝜌345 Reflectance of the entire atmosphere-land-ocean system at the top 
of the atmosphere - 

𝜌water-leaving Normalized above-surface water-leaving reflectance - 
𝜌A*!$+!2 Specular or Fresnel reflectance - 
𝜌0B)#!%&C Whitecap reflectance - 

𝐸. Upwelling irradiance W m-2 
𝐸( Downwelling irradiance W m-2 
𝐸(()// Diffuse downwelling irradiance W m-2 
𝐿# Total upwelling radiance (surface and water-leaving) W sr-1 m-2 
𝐿0 Water-leaving radiance W sr-1 m-2 
𝐿$DE Sky radiance W sr-1 m-2 
𝐿$* Surface-reflected radiance W sr-1 m-2 
𝑟 Effective sea-surface reflectance, ratio of 𝐿$*	to	𝐿$DE - 
𝑅*$ Remote-sensing reflectance of water, ratio of 𝐿0 to 𝐸( sr-1 
𝑇*$ Total remote-sensing reflectance, ratio of 𝐿# to 𝐸( sr-1 
𝑆*$ Sky remote-sensing reflectance, ratio of 𝐿$DE to 𝐸( sr-1 
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1.2 Methods 
 
A Monte Carlo RT code, T-Mart, was developed in Python to simulate photons’ propagation and 
attenuation from the TOA to Earth’s surface and back to the TOA. Collimated solar irradiance is 
the light source and a sensor is placed at an arbitrary point in 3D space. A backward Monte-
Carlo approach (Mayer et al., 2010) was implemented to speed up computation, i.e., photons are 
released from the sensor and collected at the light source. A pre-specified number of photons 
(𝑁CBF#F+) are launched into the atmosphere, and they are scattered, reflected, and attenuated 
according to their propagation paths and the optical properties of the media and the reflecting 
surfaces. Photons are tallied when they exit the TOA to infer the optical properties of the 
atmosphere-land-ocean system. 
 
T-Mart limits its scope to wavelengths between 0.4 and 1.65 μm, where the spectral dependence 
of whitecap reflectance is known (Appendix A4). This meets the requirements for ocean color 
remote sensing, which relies mostly on visible and NIR wavelengths (Dierssen et al., 2021). 
Clouds and polarization are not implemented in T-Mart and are not considered in this study.  
 
1.2.1 Propagation of radiation in the atmosphere 
 
By default, the modeled atmosphere in T-Mart is divided into 20 horizontally homogeneous 
layers. The absorption and scattering properties of each layer are defined by its aerosol and 
molecular composition, and these optical properties were imported from 6S to T-Mart through 
the Py6S interface (Wilson, 2013). Six aerosol models from 6S were included: continental, 
maritime, urban, desert, biomass burning, and stratospheric. Each model has its unique spectral 
extinction coefficient, scattering albedo, asymmetry parameter, and scattering phase function. 
There were also six atmosphere models from 6S: midlatitude summer, midlatitude winter, 
subarctic summer, subarctic, tropical, and U.S. standard. Each of them has a specified vertical 
distribution of water vapor and ozone. The concentration of aerosols and other molecules in each 
atmospheric layer is determined by pre-specified scale heights. By default, the scale heights are 8 
km for molecules and 2 km for aerosol particles following 6S (Vermote et al., 2006). 
 
A photon’s movement starts with a specified initial position and an initial direction. Once the 
photon is released, an optical thickness for scattering (𝜏$%&#) is sampled following Mayer (2009), 
 
 𝜏$%&# = −ln(ℜ) (1.1) 

 
where ℜ is a random number evenly distributed between 0 and 1. The symbols and definitions of 
radiometric quantifies used in this article are summarized in Table 1.1. An end position of this 
straight-line movement is then determined by integrating the scattering coefficient along the 
propagation direction until reaching the 𝜏$%&# determined by Eq. (1.1):  
 

 𝜏$%&# =	 7 𝑙G ∙ 𝑘$%&#	G 	
2&E!*$

 (1.2) 
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where 𝑙G is the length that the photon travels in layer 𝑖, and 𝑘$%&#	G is the scattering coefficient of 
that layer. This essentially stacks the layers in the photon’s direction of propagation and 
determines the number of layers it takes to “consume” the sampled 𝜏$%&#. It should be noted that 
because of the random nature of ℜ, the end position is rarely at the boundary between two 
atmospheric layers. 
 
There are three possible scenarios after the photon’s movement: 

1) The end position is below Earth’s surface. In this case, the intersecting point between the 
surface and the straight line formed by the movement’s initial and end positions is 
located, and the intersecting point is used as the new initial position for the next 
movement (Section 1.2.2). 

2) The end position is above the TOA. In this case, the simulation for this photon is ended 
and radiometric quantities are calculated (Section 1.2.3.2). New photons are then 
launched until the specified 𝑁CBF#F+ is reached.  

3) The end position is in the atmosphere. A scattering mode (either aerosol or Rayleigh 
scattering) is sampled using the ratio of the two scattering coefficients (Mayer, 2009). A 
new propagation direction is then determined according to the scattering phase function 
of the sampled scattering mode. 

 
The absorption of light in the atmosphere is simulated through a weight system (Mobley, 1994). 
The photon carries a weight of 1 when it enters the atmosphere, and the weight changes 
according to the path of the photon’s movement, the absorption coefficients of the atmospheric 
layers, and the reflective properties of the surfaces.  
 
Regardless of the three scenarios above, an absorption optical thickness is calculated similarly to 
Eq. (1.2) for the photon’s movement,  
 

 𝜏&'$ 	= 7 𝑙G ∙ 𝑘&'$	G
2&E!*$

 (1.3) 

 
where 𝑘&'$	G is the absorption coefficient of layer 𝑖. For movements that stopped before 
“consuming” the entire sampled 𝜏$%&# (scenarios 1 and 2 above), 𝜏&'$ is calculated from the 
initial position only to the intercepting point at TOA or the surface. Next, the direct transmittance 
for absorption can be calculated as 
 
 𝑇&'$ = 𝑒IJ!"# (1.4) 

 
following Liou (2002). The attenuation of radiation as it travels through the medium is simulated 
by modifying the photon’s weight (𝑤), 
 
 𝑤 = 𝑤K ∙ 𝑇&'$ (1.5) 

 
where 𝑤K is the photon’s weight before the movement. The history of a photon’s scattering and 
reflection events is recorded throughout its movements to differentiate the various components of 
TOA reflectance (Section 1.2.3.2).  
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1.2.2 Surface reflection  
 
1.2.2.1 Definitions of reflectances in T-Mart 
 
Two types of reflectances are described throughout this article, defined following Schaepman-
Strub et al. (2006). Bihemispherical reflectance (𝜌, unitless) describes the ratio of the radiant flux 
leaving a surface or medium to the incident radiant flux. Hemispherical-directional reflectance 
(𝑅, sr-1) describes the ratio of reflected radiant flux per unit solid angle surrounding a given 
direction, multiplied by 𝜋, to the incident radiant flux from the entire hemisphere. A Lambertian 
surface has the same numerical value for 𝜌 and 𝑅. In optical remote sensing applications, 𝑅 is 
usually used because of the difficulty of collecting reflected radiant flux toward the entire 
hemisphere. 
 
1.2.2.2 Surface triangulation and reflectance  
 
When the line formed by a photon’s movement intersects the modeled land or water surface, the 
photon is reflected from the point of intersection (Fig. 1.1) and a new weight of the photon is 
calculated by multiplying the initial weight by the bihemispherical reflectance of the surface 
(𝜌$.*/) following Mayer (2009). On land, the pixels of a digital elevation model (DEM) are 
connected to form 3D triangles to model RT in complex topography and the impact of elevation 
and landscape morphology on TOA reflectance. When a photon intercepts the triangulated 
surface, a new direction of propagation is sampled following the reflective properties of the 
surface, and the new direction is tilted to the surface normal of the triangle (Fig. 1.1).  

 
Fig. 1.1. Illustration of a photon incident on a triangulated surface. The photon moves from the blue end to the 
red end of the vertical line and intersects the triangulated pixel below. The green line intersecting the same 
point is the surface normal of the triangle. The orange line is the sampled reflected direction of a Lambertian 
surface tilted to the surface normal; it is also the new direction of propagation in the photon’s next movement. 
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For every photon movement, the line formed by the movement is tested for intersection with the 
triangles. If a photon reaches the surface outside the DEM, it is reflected by the background 
surface. The background surface extends horizontally to infinity, and it is divided into two 
sections separated by a straight line. Each background section is a homogeneous land or water 
surface with a specified reflectance, to facilitate the modeling of coastal environments where 
both terrestrial and aquatic background reflectances are needed.  
 
A few standard reflectance spectra were incorporated in T-Mart, including dry beach sand, wet 
beach sand, conifer forest, and lawn grass from the USGS Spectral Library (Kokaly et al., 2017), 
and three water spectra calculated by HydroLight with chlorophyll concentrations of 0.1, 1 and 
10 mg/m3. The normalized water-leaving reflectance (𝜌water-leaving, unitless), defined as the 
measured reflectance with a nadir-viewing sensor and the sun at the zenith in the absence of 
atmospheric attenuation (Morel and Gentili, 1996), was used and it was calculated by 
multiplying the HydroLight-calculated remote sensing reflectance (𝑅*$, sr-1) by 𝜋 in the above-
described environment (Mobley, 2022). In addition, users can manually specify the reflectance 
spectra of custom surfaces. 
 
1.2.2.3 Reflectance of water 
 
Section 1.2.2.2 focused on how T-Mart models the reflective properties of surfaces in general. 
The reflectance of water in T-Mart is more complex and consists of three components: 1) user-
specified 𝜌water-leaving just above the water surface, 2) specular or Fresnel reflectance (𝜌A*!$+!2, 
unitless), and 3) whitecap reflectance (𝜌0B)#!%&C, unitless). When a photon impinges on the 
modeled water surface, water’s total bihemispherical reflectance (𝜌0&#!*, unitless) of the three 
components is calculated and is used to determine the weight of the photon after the reflection. 
The abovementioned bihemispherical reflectances of water are calculated as follows. For every 
water-reflecting event, the orientation of the surface is first sampled from the Cox-Munk slope 
distribution (Cox and Munk, 1954) to model the interface between the air and the water at an 
infinitesimally fine scale. The incidence angle is then calculated according to the surface 
orientation and the incoming direction of the photon. The Fresnel reflectance of water is 
calculated using the incidence angle and wavelength of the photon as well as water’s salinity and 
temperature (Appendix A3). Then, 𝜌0&#!* is calculated as the sum of whitecap-fraction-corrected 
𝜌0B)#!%&C, 𝜌A*!$+!2 and 𝜌water-leaving, 
 
 𝜌0&#!*(𝜆) = 𝐹 ∙ 𝜌0B)#!%&C(𝜆) + (1 − 𝐹)B𝜌A*!$+!2(𝜆) + 𝜌water-leaving(𝜆)C (1.6) 

 
where 𝜆 is the wavelength and 𝐹 is the fraction of the sea surface covered by whitecaps 
(calculations of whitecap reflectance and fraction are presented in Appendix A4). Similar to how 
𝜌$.*/&%! modifies the photon’s weight, the weight of the photon is multiplied by 𝜌0&#!* at the 
water reflection, but the photon has a probability of going through a specular reflection 
according to the ratio of whitecap-fraction-corrected 𝜌A*!$+!2 to 𝜌0&#!*. Although the photon 
carries the same weight after the reflection regardless of the mode of reflection (specular or 
Lambertian), the photon’s energy is conserved through sampling of moving directions.  
To summarize, T-Mart has two reflectance models: 1) Lambertian surfaces that reflect light 
isotopically and 2) specular reflectance following the Cox-Munk slope distribution and Fresnel’s 
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equations. Note that the reflectance of water has both Lambertian and specular components: 
𝜌water-leaving and 𝜌0B)#!%&C are treated as Lambertian, and 𝜌A*!$+!2 is treated as specular. 
 
1.2.3 Acceleration of computation 
 
Monte Carlo methods come with inherent noise that can be reduced by increasing the sample 
size, which may lead to a long computation time (Buras and Mayer, 2011). One way to speed up 
computation is to use more computing units; the multiprocessing package in Python was used in 
T-Mart to utilize the multiple cores of personal computers. GPU acceleration will likely make 
this even faster due to GPUs’ parallel-computation nature, but it was not implemented because it 
often requires specialized graphic cards and software environments which are difficult for users 
to maintain. In addition, the backward Monte Carlo (Section 1.2.3.1) and the local-estimate 
techniques (Section 1.2.3.2) were implemented in T-Mart to speed up computation. Currently, T-
Mart processes one million photons in roughly 5 minutes on personal computers with eight-core 
processors. This translates to differences of less than 0.6 % compared to libRadtran in extreme 
optical conditions (Fig. 1.3). The standard error of Monte Carlo estimates is proportional to 
𝑁CBF#F+

I$% (Mobley, 1994), meaning that if we increase or decrease the computation time by a 
factor of 10, the precision is accordingly increased or decreased by a factor of √10. 
 
1.2.3.1 Backward Monte Carlo technique 
 
In forward Monte Carlo models, simulated photons are released from the light source and are 
collected by a simulated instrument at a specified location (Marchuk et al., 1980). In the field of 
aquatic remote sensing, the light source is the parallel solar irradiance incident on the TOA and 
the simulated sensor is located at a point on a satellite orbit. The problem with the forward 
approach is that the simulated sensor is often very small compared to Earth’s atmosphere and 
ocean system. As a result, the probability of a photon intercepting the sensor is extremely low, 
making the modeling impractical or highly inefficient (Mobley, 1994). In addition, when 
simulating 3D scenarios, the area of the surface receiving photons cannot be determined in 
advance because this depends on the sun-sensor geometry and environmental conditions, such as 
the scattering properties of the atmosphere (Mobley, 1994). 
 
Backward Monte Carlo models are often used to overcome the challenges in forward Monte 
Carlo modeling (Bulgarelli et al., 2014; Mayer et al., 2010; Reinersman and Carder, 1995). 
Instead of releasing the photons at the light source, backward models release photons at the 
sensor and trace them back to the light source. This approach overcomes the difficulties of 
releasing photons at a surface of unknown size and collecting photons at a very small target, and 
because almost all released photons are tallied, this also significantly improves computational 
efficiency (Mayer et al., 2010; Mobley, 1994). Backward Monte Carlo methods rely on the 
principle of reciprocity in radiative transfer (Light, 2003), i.e., the same amount of photons will 
be received at the sensor if the sensor and the light source switch places.  
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1.2.3.2 Calculating radiometric quantities 
 
T-Mart can calculate both 𝜌 and 𝑅 (Section 1.2.2.1). The former does not consider the angular 
distribution of the reflected radiance but is important in determining the illumination conditions 
of the atmosphere and surfaces. The latter is more commonly used in remote sensing when the 
reflectance of a surface is derived by observing it from a single fixed sensor aperture. 
T-Mart calculates 𝜌 at the TOA or any elevation by counting the number of photons moving 
across a plane-parallel surface, weighted by the photons’ weights and normalized to the initial 
number of photons (𝑁CBF#F+),  
 

 𝜌 = 𝐸./𝐸( =
∑ ∑ 𝑤-F,!-!+#CBF#F+

𝑁CBF#F+
 (1.7) 

 
where 𝐸. is the upwelling irradiance (W m-2) and 𝐸( is the downwelling irradiance (W m-2). As 
seen in Eq. (1.7), a photon can contribute to the irradiance or exitance at a certain level more 
than once through multiple movements or multiple scattering. As a result, photons reflected by 
the surface can be redirected to the surface again by molecules and aerosols in the atmosphere, 
reflecting the spherical albedo of the atmosphere (Vermote et al., 2006). 
 
Next, 𝑅 is calculated using the local-estimate technique (Marchuk et al., 1980). The local-
estimate technique is analogous to creating a virtual photon at each collision (scattering or 
reflection) and forcing it to move toward the sensor, weighted by the photon’s probability of 
scattering into the sensor’s direction. At every collision, the probability of a photon scattering 
into the sensor’s direction is calculated according to the scattering phase function at the collision, 
the remaining weight of the photon, and the extinction coefficient between the collision and the 
sensor (Mayer, 2009). The combined aerosol and molecular scattering phase function, weighted 
by the respective scattering optical thicknesses, is used when the collision happens in the 
atmosphere. Just like regular photons, the virtual photon is subject to extinction along its way to 
the sensor. 
 
For a scattering event, the local-estimate weight, 𝑤L, is calculated as part of the total reflectance,  
 

 𝑤L = 𝑤 ∙
pI𝜃CK ∙ 𝑒IJ&'(

cos(𝜃,)
	 (1.8) 

 
where 𝑤 is the photon’s weight, 𝜃C is the angle between the sensor’s direction and the photon’s 
propagation direction before scattering, and the phase function p(𝜃C) describes the probability 
that the scattered angle is 𝜃M. The extinction optical thickness (𝜏!"#) is the sum of 𝜏$%&# and 𝜏&'$, 
and 𝑒IJ&'( describes the direct transmittance for extinction between the collision point and the 
sensor. Last, 𝜃, is the viewing zenith angle and cos(𝜃,) accounts for the slant area of the target 
as viewed by the sensor.  
 
For a reflection event, 𝑅$.*/ can replace pI𝜃CK in Eq. (1.8) as the probability of a photon 
reflecting into the sensor’s direction, 



Chapter 1: Adjacency effect modelling 

 13 

 

 𝑤L = 𝑤 ∙
𝑅$.*/ ∙ 𝑒IJ&'(
cos(𝜃,)

. (1.9) 

 
For a photon’s collision at a Lambertian surface, either 𝑅 or 𝜌 of the surface can be used as 𝑅$.*/ 
as there is no angular dependency. For a collision at a water surface, the bihemispherical-
directional reflectance of water (𝑅0&#!*, sr-1) replaces 𝑅$.*/ in Eq. (1.9), and it is calculated by 
replacing 𝜌A*!$+!2 in Eq. (1.6) with the hemispherical-directional reflectance of glint (𝑅12)+#, sr-1),  
 

 𝑅0&#!*(𝜆) = 𝐹 ∙ 𝜌0B)#!%&C(𝜆) + (1 − 𝐹)B𝑅12)+#(𝜆) + 𝜌water-leaving(𝜆)C. (1.10) 

 
The full calculation of 𝑅12)+# is described in Appendix A for brevity. Lastly, 𝑅 can be calculated 
as 
 

 𝑅 =
∑ ∑ 𝑤L-F,!-!+#CBF#F+

𝑁CBF#F+
, (1.11) 

 
and it can be further divided into three components following 6S (Vermote et al., 2006): 
 

Direct reflectance (𝑅()*, sr-1): 𝑛$%&##!* = 0  
Environmental reflectance (𝑅!+,, sr-1): 𝑛$.*/&%! ≥ 1 and 𝑛$%&##!* ≥ 1  
Atmospheric intrinsic reflectance (𝑅&#-, sr-1): 𝑛$.*/&%! = 0  

 
where 𝑛$.*/&%! and 𝑛$%&##!* are respectively the numbers of surface reflections and scattering that 
happened to a photon. It should be noted that 𝑛$%&##!* resets to 0 each time a photon reaches a 
surface, because scattering events before the photon reaches the last surface are viewed as 
diffuse contributions to the surface irradiance. In other words, 𝑅()* is from photons that travel 
from the target pixel to the sensor without being scattered (regardless of the photons’ history 
before hitting the target pixel), 𝑅!+, is from photons that travel from the non-target pixels to the 
sensor through scattering, and 𝑅&#- is from photons that never reached the surface of the Earth. 
Changes in 𝑅!+, due to inhomogeneous surfaces are the basis of the adjacency effect.  
 
1.3 Validation  
 
T-Mart was validated against libRadtran and 6S, with a focus on the accuracy of the calculated 
radiometric quantities with libRadtran. Validation of T-Mart against 6S was conducted to test the 
results of the two models using the same atmospheric and aerosol settings.  
 
1.3.1 Comparison to libRadtran  
 
libRadtran (Emde et al., 2016) is a widely used software package for Earth-observation RT 
calculations. It is open-source and was written in Fortran and C. libRadtran supports the 
calculations of radiances, irradiance, and actinic fluxes given atmospheric and surface 
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parameters. Some of its applications include studying the radiative effects of greenhouse gases 
(Ehret et al., 2008) and aerosols from burning emissions (Saleh et al., 2015) and mapping the leaf 
area of seagrasses and their depth in the water (Hedley et al., 2016). Due to its versatility and 
wide use, libRadtran was used to validate the results produced by T-Mart. 
 
There are six RT solvers in the publicly available version of libRadtran, each with its own 
specialties. MYSTIC and DISORT are among the most used solvers. Like T-Mart, MYSTIC is 
based on Monte Carlo random sampling. DISORT, the default solver of libRadtran, is based on 
the discrete-ordinates method which approximates RT by discretizing the infinite number of 
possible angles in a 3D space (Stamnes et al., 1988). MYSTIC has a 3D version that would 
ideally be used as the benchmark in this study due to its similar nature to T-Mart, but it is 
unavailable to the public and only a one-dimensional (1D) version is provided (Mayer et al., 
2020). DISORT is therefore used as the benchmark for this comparison, provided that MYSTIC 
and DISORT produce almost identical results (Mayer, 2009) and DISORT does not have 
statistical noise from Monte Carlo simulations.  
 
Validations of T-Mart against DISORT were run with molecular-scattering optical thicknesses 
from 0.05 to 0.5 in the absence of aerosols. This range is similar to the molecular-scattering 
optical thicknesses from 400 to 700 nm, which is approximately 0.4 at 400 nm and 0.04 at 700 
nm. Although wavelengths and molecular-scattering optical thicknesses are highly correlated, 
optical thickness is used as the unit for comparison to show more gradual changes in calculated 
radiometric quantities. 𝜌$.*/ is set to 0.1 and 𝜏&'$ is set to 0.3 for all validation runs with 
libRadtran. It is worth noting that a 𝜏&'$ of 0.3 is quite an extreme value that is usually only 
found in the strong absorption bands. It is included here to highlight the possible differences in 
how the codes handle the absorptive properties of the atmosphere. Aerosol models in T-Mart 
were imported from 6S for continuity of past data processing (Section 1.5.2); they are slightly 
different from the ones in libRadtran therefore aerosols were not considered in this section. 
 
Comparisons of diffuse downwelling irradiance at the surface (𝐸(()//, W m-2) and bihemispherical 
reflectance at TOA (𝜌345, unitless) were made. 𝐸(()// was included because the accuracy of the 
diffuse part of irradiance, rather than the direct part, depends on many factors in the RT 
calculations such as the modeled multiple scattering, atmospheric spherical albedo, and surface 
reflectance. Direct irradiance can be easily calculated through Beer’s Law; it is not included as it 
is essentially the same across all RT models. The comparisons included 𝜌345 because it 
considers all steps of solar radiation entering the atmosphere, interacting with the surface, and 
exiting the TOA. 
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Fig. 1.2. a) Diffuse downwelling irradiance at surface level (𝐸!!"##) normalized to total irradiance at TOA, and 
b) bihemispherical reflectance at TOA (𝜌$%&), both as a function of molecular-scattering optical thickness at 
selected solar zenith angles. Lines are from libRadtran DISORT, and shapes are from T-Mart. Nadir viewing 
angle, 𝜌'()# = 0.1, 𝜏*+' = 0.3, and 𝑁,-./.0 = 1,000,000 for T-Mart runs. The discrepancy between the lines and 
the shapes is almost unnoticeable here, but it is quantified in Fig. 1.3. 
 
Both 𝐸(()// and 𝜌345 calculated by T-Mart and DISORT are very similar (Fig. 1.2). Their 
differences are calculated as  
 

 %	difference =
Value3IN&*# −	ValueOPQ4R3

ValueOPQ4R3
× 100 (1.12) 

 
and the % differences at each solar zenith angle across optical thicknesses are presented in Fig. 
1.3, with a maximum % difference of 0.59 %. The differences are smaller when 𝜏&'$ is lowered, 
as this reduces the noise in the Monte Carlo model; they are about five times smaller at a 𝜏&'$ of 
0 compared to a value of 0.3 (not shown). The calculated radiometric quantities exhibit slight 
angular dependency (Fig. 1.3), likely due to the angular discretization in the discrete-ordinate 
method; while a Monte Carlo method calculates the exact angular solution, methods with angular 
discretization may produce larger errors from larger discretized angles. 
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Fig. 1.3. % Differences between T-Mart and libRadtran DISORT in calculated a) diffuse downwelling 
irradiance at surface level (𝐸!!"##) normalized to total irradiance at TOA and b) bihemispherical reflectance at 
TOA (𝜌$%&), both as a function of molecular-scattering optical thickness at selected solar zenith angles. Nadir 
viewing angle, 𝜌'()# = 0.1, 𝜏*+' = 0.3, and 𝑁,-./.0 = 1,000,000 for T-Mart runs. 
 
1.3.2 Comparison to 6S 
 
6S (Vermote et al., 1997b) is another RT code widely used in the remote-sensing community. It 
solves RT with the successive-order-of-scattering method. A comparison of reflectances 
calculated by T-Mart and 6S was made for a typical coastal environment with the “midlatitude 
summer” atmosphere and “maritime” aerosols in 6S. Two scenarios were run: 1) aerosol optical 
thickness (AOT) is 0.0 and surface albedo is 0.1, and 2) AOT at 550 nm (AOT550) is 0.5 and 
surface albedo is 0.5. An AOT550 of 0.5 is quite extreme and is used here only to highlight the 
possible differences between the RT solvers. The solar zenith and viewing zenith angles were 
both 30° with a 90° relative azimuth angle, following a typical ocean-color observation (Mobley, 
2022). R was broken down into 𝑅()*, 𝑅!+,, and 𝑅&#- (Section 1.2.3.2) in the comparison. 
Results from T-Mart and 6S for both scenarios generally align with each other, except at high-
molecular-absorption wavelengths such as 760 nm (Fig. 1.4a and b). T-Mart tends to produce 
slightly lower 𝑅()* and 𝑅!+, and slightly higher 𝑅&#- at high-absorption wavelengths. For most 
purposes, these differences are not a major concern because i) they are relatively small, and ii) 
these wavelengths are usually avoided for aquatic remote sensing; however, caution should be 
taken for applications that make use of high-absorption wavelengths. 
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Fig. 1.4. TOA reflectance of a Lambertian surface for a) AOT = 0 and surface albedo = 0.1 and b) AOT550 = 
0.5 and surface albedo = 0.5. Both results are produced with a mid-latitude summer atmosphere and maritime 
aerosols. Solar zenith and viewing zenith angles are both 30°, with a 90° relative azimuth angle. 𝑁,-./.0 = 
1,000,000 for T-Mart runs. 
 
Overall, even in extreme absorption and scattering conditions, T-Mart produces results that are 
very similar to those from libRadtran DISORT (difference < 0.6 % when 𝑁CBF#F+ = 1,000,000), 
and it generally also aligns well with 6S, except at high-absorption wavelengths.  
 
1.4 Case studies 
 
1.4.1 Case Study 1: NIR reflectance of lakes in Minnesota 
 
There are more than 11,000 lakes in Minnesota (Minnesota DNR, 2013), many of which were 
formed when glaciers moved back and forth across Minnesota during the last Ice Age. The lakes 
vary in size and provide an excellent opportunity to study the magnitude of the adjacency effect 
because small lakes are relatively more affected by the adjacency effect than larger lakes; lakes 
of different sizes may therefore exhibit a gradient of the impact of the adjacency effect.  
Lakes 30 km northwest of Mille Lacs Lake (46.25N, 93.64W) were selected for this case study 
(Fig. 1.5). Two Sentinel-2 images (20200921T171021_20200921T172005_T15TVM and 
20200921T171021_20200921T172005_T15TUM) were chosen, both acquired at 11:10 am local 
time on September 21, 2020. The lakes were in the middle of the two images, so a mosaic was 
created, and its average viewing geometry was used in the modeling (solar zenith: 47.35°, solar 
azimuth: 163.3°, viewing zenith: 4.95°, viewing azimuth: 145°). These images were chosen 
because 1) there were no significant breaking waves in the lakes and the wind was stable for an 
extended period of time, allowing the use of Cox-Munk’s equations, 2) there were no clouds near 
the lakes, which could introduce additional adjacency effect (Feng and Hu, 2016), 3) the high 
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aerosol loading during the time of image acquisition produced a strong adjacency effect, and 4) 
the images were free of strong sun glint across all lakes. 
 

 
Fig. 1.5. Observed TOA reflectance (band 8 of Sentinel-2 MSI, centered at 833 nm) of Lakes near Brainerd, 
Minnesota on September 21, 2020. 
 
The objective of this case study was to model the adjacency effect in T-mart and examine its 
contribution to the lakes’ TOA reflectance in the NIR band of Sentinel-2 MSI (band 8, centered 
at 833nm). The NIR band was chosen because of its significance in aquatic remote sensing 
where it is often used in estimating the aerosol contribution in atmospheric correction of TOA 
images; the overestimated reflectance in NIR due to the adjacency effect can thus lead to 
overestimated AOT and underestimated reflectances in the visible wavelengths, with subsequent 
biases in the retrieved water optical properties (Moses et al., 2017). 
 
The images were first imported to T-Mart. A water mask was applied to the scene using the 
Normalized Difference Water Index (NDWI) calculated as (band 3 – band 8) / (band 3 + band 8), 
and pixels with an NDWI greater than 0 were determined to be water upon visual examination. 
Based on water’s high absorption in the NIR range, 𝜌water-leaving (833nm) was assumed to be 0, 
an assumption we expect to hold except in extremely shallow or very turbid waters, where 
bottom reflectance or backscattering, respectively, may produce a small water-leaving signal at 
this wavelength (Moses et al., 2017; Werdell et al., 2018). The “midlatitude summer” 
atmosphere model and the “continental” aerosol model from 6S were used to characterize the 
atmosphere. An AOT550 of 0.28 was used, and it was the average AOT550 around the lakes 
derived by ACOLITE (Vanhellemont and Ruddick, 2018). ACOLITE was determined to be one 
of the best atmospheric correction processors for aquatic remote sensing of inland waters in an 
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intercomparison exercise (Pahlevan et al., 2021); it derives AOTs using the dark-spectrum-fitting 
technique which could utilize the shadows of ground-level objects in inland scenes, making it 
suitable to determine AOT550 in this case study. The surface reflectance of the land, an input to 
the model, was also retrieved in ACOLITE for consistency. A wind speed of 5 m/s was used 
based on the hourly weather history of Brainerd, Minnesota, a city located roughly 5 km away 
(www.wunderground.com, Fig. 1.5). An azimuthally averaged 𝑅12)+# was used because the wind 
direction was unknown. 𝜌0B)#!%&C was included but it was negligible with a wind speed of 5 m/s. 
The ground surface was assumed to be flat, as this part of Minnesota is largely a flat lowland. 
The pixels were resampled to 200 by 200 m resolution to speed up computation. A total of 47 
lakes larger than 600 by 600 m were selected to avoid the “pixelated edge” effect, and the TOA 
reflectance was extracted and modeled at the centroids of these lakes for comparison (Fig. 1.5 
and Fig. 1.6).  
 
Even with a fixed 𝜌water-leaving of 0 and ignoring the effects of bottom reflectance and turbidity, 
the modeled TOA reflectance at 833 nm strongly correlated with the observed values across the 
47 lake centroids (Fig. 1.6). With a simple linear regression, 83.7 % of the variance of the lakes’ 
TOA reflectance could be explained by the adjacency effect. This is striking because the NIR 
band is often used to derive aerosol properties that are extrapolated to visible bands in 
atmospheric correction for aquatic remote sensing. Taking into account the adjacency effect in 
atmospheric correction, especially under high aerosol loadings, is therefore essential for deriving 
accurate reflectance spectra of inland waters and aquatic remote sensing products.  
 

 
Fig. 1.6. Modeled and observed TOA reflectance (band 8 of Sentinel-2 MSI, centered at 833 nm) of Lake 
centroids near Brainerd, Minnesota on September 21, 2020. AOT550 = 0.28, wind speed = 5 m/s, and 𝑁,-./.0 = 
1,000,000 for T-Mart runs. 
 
In addition, a sensitivity analysis was conducted to test the impact of various AOT and wind-
speed values on the modeled TOA reflectance of the lakes. AOT550 of 0.23, 0.28, and 0.33 and 

http://www.wunderground.com/
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wind speeds of 3, 5, and 10 m/s were tested (Appendix B). An AOT550 of 0.28 and wind speed of 
5m/s produced the lowest RMSE and followed the 1:1 line the most closely, suggesting the two 
values used in Fig. 1.6 were reasonable.  
 
1.4.2 Case study 2: transects of NIR reflectance  
 
Another examination of the adjacency effect was conducted in Lake Edward (46.51N, 94.16W), 
one of the 47 lakes in Case Study 1. The TOA reflectance along two perpendicular transects 
across this lake was modeled in T-Mart and extracted from the images (Fig. 1.7). The same 
Sentinel-2 images and atmospheric settings for modeling in Case Study 1 were used in this case 
study.  

 
Fig. 1.7. a) Transects across Lake Edward, Minnesota, and b) the observed TOA reflectance (band 8 of 
Sentinel-2 MSI, centered at 833 nm) on September 21, 2020. 
 
The modeled and observed TOA reflectance at 833 nm aligned with each other along the two 
transects in Lake Edward; both reached their lowest values in the middle of the lake and 
gradually increased toward the shorelines (Fig. 1.8). This aligned with the observation of Kiselev 
et al. (2015) where higher adjacency-effect-induced TOA reflectance in a NIR band was also 
found toward the shorelines. The observed reflectance was higher than modeled values near the 
edges of the lake (Fig. 1.8), likely from bottom reflectance or higher turbidity near the shore 
which can invalidate the assumption of no water-leaving radiance at 833 nm.  
 
The modeled TOA reflectance was overestimated in the southern part of the North-South 
transect (Fig. 1.8b), where the narrow part of the lake had a higher simulated TOA reflectance 
than the observed reflectance. This may be explained by the fetch-limited wave growth (Kahma, 
1981) – the size of the surface waves depends on the fetch or the length of water over which the 
wind has blown without obstruction. The narrowed southern part of the lake limits the fetch 
length and therefore could limit the size of the waves and lead to lower glint reflectance.  
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Fig. 1.8. Modeled and observed TOA reflectance (band 8 of Sentinel-2 MSI, centered at 833 nm) along a) 
west-east and b) north-south transects of Lake Edward, Minnesota on September 21, 2020. 
 
1.4.3 Case study 3: surface-reflected light of ocean water in Hawaii 
 
The surface-reflected light off of water, or glint, contains little information about the constituents 
in the water and can therefore be considered noise in ocean color remote sensing. This case study 
compares modeled surface-reflected light with field-measurement-derived values from Lee et al. 
(2010). 
 
Glint has many implications in aquatic remote sensing. For atmospheric correction of open-
ocean TOA images, glint is often modeled by Cox-Munk’s equations and removed from the 
TOA reflectance of water (Zhang and Wang, 2010; Kay et al., 2009). For in-situ above-water 
measurements of water’s reflectance, a common approach to isolate the water-leaving radiance 
(𝐿0, W sr-1 m-2) from glint is to measure the sky radiance (𝐿$DE, W sr-1 m-2) at an angle 
reciprocal to the measurement of the total upwelling radiance (𝐿#, W sr-1 m-2), multiply the sky 
radiance by a pre-computed effective sea-surface reflectance (𝑟, unitless) to calculate surface-
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reflected radiance (𝐿$*, W sr-1 m-2), and remove 𝐿$* from 𝐿# (Lee et al., 2010). This can be 
summarized as 
 

 

𝐿# = 𝐿0 + 𝐿$* = 𝐿0 + 𝑟 ∙ 𝐿$DE 

𝑟 =
𝐿$*
𝐿$DE

 

𝐿0 = 𝐿# − 𝑟 ∙ 𝐿$DE. 

(1.13) 

 
The value of 𝑟 depends on sky conditions, the sea surface state, and viewing geometry (Mobley, 
1999). It is often set to a spectrally flat value of 0.028 for all wavelengths with a viewing zenith 
angle of 40° and an azimuth angle of 135° relative to the sun when the wind speed is lower than 
5 m/s; and for higher wind speeds, 𝑟 increases accordingly but remains spectrally flat (Mobley, 
1999). 
 
Lee et al. (2010) took field measurements of 𝐿# (9 scans), 𝐿$DE (5 scans), and downwelling 
irradiance just above the surface (𝐸(, 3 scans) to derive 𝑟. These measured values had slight 
variations due to natural ocean surface variability and the vessel constantly moving. To minimize 
the effect of the changing illumination, the radiances were converted to reflectances by 
normalizing them to 𝐸(,  
 
 𝑇*$ = 𝑅*$ + 𝑟 ∙ 𝑆*$ (1.14) 

 
where 𝑇*$ is the total remote-sensing reflectance (ratio of 𝐿# to 𝐸(), 𝑅*$ is the remote-sensing 
reflectance of water (ratio of 𝐿0 to 𝐸(), and 𝑆*$ is the sky remote-sensing reflectance (ratio of 
𝐿$DE to 𝐸(). All these reflectances are hemispherical-directional and have a unit of sr-1. Then, 𝑟 is 
calculated as 
 

 𝑟 =
𝑇*$ − 𝑅*$
𝑆*$

 (1.15) 

 
where the last unknown 𝑅*$ is derived from the bio-optical model of Morel and Maritorena 
(2001) using chlorophyll-a concentration of 0.05 and 0.1 mg/m3. 
 
T-Mart can characterize the RT both in the atmosphere and at the ocean surface, allowing us to 
model 𝑟 and compare with results from Lee et al. (2010). The environmental conditions 
documented by Lee et al. (2010) were used as input to model 𝑟 in T-Mart. The measurements 
were made on clear open ocean near Hawaii (21.33 N, 158.16 W) at 12:50 pm local time on 
February 23, 1997. The wind speed was around 8 m/s, and the sky was cloud-free. 𝐿# and 𝐿$DE 
were taken 90° from the solar plane to avoid strong sun glint, with zenith angles of 30° from 
nadir and 30° from zenith, respectively. The sun’s position was calculated as 30.88° from zenith 
by entering the provided date, time and location in NOAA’s Solar Calculator 
(https://gml.noaa.gov/grad/solcalc/). Only the relative azimuth angle of the sun was used in the 
modeling – although the sun’s azimuth angle has an impact on the specular reflectance of water 
because the slopes of ocean surface waves have a small dependency on the wind direction 
(Appendix A2), the wind direction was unknown. Thus, an azimuthally averaged 𝑅12)+# was 

https://gml.noaa.gov/grad/solcalc/
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used, as this only depends on the relative azimuth angle between the sun and the sensor, and this 
is known from the image metadata. The AOT at the time of the measurements was unknown, and 
an averaged clear-sky AOT550 of 0.05 near Hawaii in February from the MODIS MCD19A2 data 
product (Lyapustin and Wang, 2018) was used. In addition, wind speeds of 6, 8, and 10 m/s were 
used to test the sensitivity of the results to wind speed. 
 
Both modeled 𝑟 and field-data-derived 𝑟 showed a strong wavelength dependence over clear 
ocean water, increasing with longer wavelengths (Fig. 1.9). This raises concerns about Mobley 
(1999)’s suggestion of using a spectrally flat 𝑟 in above-water measurements of 𝑅*$. Most of the 
differences between the two datasets were within the 400 and 600 nm range, where the derived 𝑟 
largely depended on the chlorophyll concentration used in the bio-optical model (points in Fig. 
1.9). The measurement-derived 𝑟 values roughly fell within the 6-to-8 m/s range of the modeled 
values. The alignment between the two datasets supports the accuracy of the field measurements 
and the Cox-Munk surface-reflectance model implemented in T-Mart. The values of 𝑟 varied 
significantly across the 400-to-800 nm spectrum in both datasets by a factor of up to 10, and the 
values at a single wavelength can be substantially different, too (Fig. 1.9). This suggests that 𝑟 
depends heavily on the environmental conditions such as wind speed and the movement of the 
vessel, in addition to its spectral dependence on atmospheric settings.  
 

 
Fig. 1.9. Effective surface reflectance (𝑟) as a function of wind speed from 400 to 800 nm. AOT550 = 0.05, 
wind speed = 6, 8, and 10 m/s (bottom, middle and top lines, respectively). Viewing and solar zenith angles are 
30° and 30.88°, respectively, with a relative azimuth angle of 90°. Points are derived with two chlorophyll 
concentrations (unit: mg/m3) from measurements in Lee et al. (2010). 𝑁,-./.0 = 100,000 for T-Mart runs.  
 
Another sensitivity analysis was run to explore the impact of various AOTs on 𝑟. AOT550 of 0, 
0.05, and 0.1 were used against wind speeds of 6, 8, and 10 m/s, and it was found that 𝑟 is higher 
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with lower AOTs (Fig. 1.10). This is because, at a low AOT, atmospheric scattering is 
predominantly molecular, which decreases exponentially with wavelength; this leads to a 
lowered 𝐿$DE at longer wavelengths. On the other hand, 𝐿$* is not lowered with a lower AOT; in 
fact, it increases slightly due to lowered aerosol attenuation to solar irradiance in the atmosphere. 
An unchanging 𝐿$* and a lowered 𝐿$DE contribute to the higher 𝑟 (Eq. (1.13)). Higher 𝑟 values 
were also associated with a higher wind speed (Fig. 1.10), which presumably increases the 
magnitude of the surfaces waves and directs more sun glint into the sensor’s field of view, even 
if the sensor has an azimuth angle 90° relative to the sun.  
 

 
Fig. 1.10. Effective surface reflectance (𝑟) as a function of wind speed and AOT from 400 to 800 nm, as 
modeled by T-Mart (𝑁,-./.0= 100,000). Viewing and solar zenith angles are 30° and 30.88°, respectively, 
with a relative azimuth angle of 90°. 
 
Lee et al. (2010) made direct measurements of 𝑆*$, and the measured values fitted the range of 
modeled 𝑆*$ with a TOA between 0.05 and 0.025 (Fig. 1.11a). This suggests that the TOA of 
0.05 used to produce Fig. 1.9 may be slightly overestimated, and the range of 𝜌 with a slightly 
lower AOT will shift upward, making the measurement-derived values fit the modeled values 
better in the 400-700 nm range. The spectral shapes of simulated and measured 𝑆*$ are also 
slightly different, with most of the measured values decreasing more with wavelength than 
modeled values (Fig. 1.11a). This reflects small errors in the atmospheric and aerosol settings in 
the model. The wind speed was set to 8 m/s in the modeling of 𝑆*$; although in theory wind 
speed affects 𝐿$* and 𝜌 and therefore the spherical albedo of the atmosphere and 𝐿$DE, the impact 
is extremely small and wind speed was determined to have negligible impact on 𝐿$DE (not 
shown). 
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The impact of the total atmospheric transmittance, defined as the ratio of 𝐸( at surface to 𝐸( at 
TOA, was investigated (Fig. 1.11b). The magnitude of the total transmittance changed little with 
an AOT550 of 0.1 compared to 0.0 and 0.05; this is most likely due to aerosol’s largely forward-
scattering phase function. Although the high-absorption bands have a significant impact on the 
spectral shapes of 𝐿$DE and 𝐸( (not shown), this impact is almost eliminated in the normalization 
process, leading to the relatively smooth spectral shapes of 𝑟 and 𝑆*$ (Fig. 1.10 and Fig. 1.11a). 
The high-absorption bands led to some Monte Carlo noise in the modeled results, especially 
from H2O at 720 nm and O2 at 760 nm (Fig. 1.10). 
 

 
Fig. 1.11. a) Sky remote-sensing reflectance, 𝑆)', simulated at various AOTs and from Lee et al. (2010)’s 
measurements, and b) modeled total atmospheric transmittance at various AOTs, noting the important 
absorptive gases. Viewing and solar zenith angles are 30° and 30.88°, respectively, with a relative azimuth 
angle of 90°. 
 
1.5 Discussion 
 
1.5.1 Model accuracy 
 
The accuracy of radiometric quantities calculated by T-Mart was carefully tested against RT 
models. T-Mart and libRadtran DISORT produced almost identical 𝐸(()// and 𝜌345 across a wide 
range of molecular-scattering optical thicknesses with high absorption (Fig. 1.2), providing 
confidence in the accuracy of T-Mart’s radiative calculations. A comparison was also conducted 
between T-Mart and 6S using the same atmospheric and aerosol settings. Differences as large as 
20 % in the calculated reflectances were observed at high-absorption wavelengths, but the results 
were very similar at most other wavelengths (Fig. 1.4). Although slower, Monte Carlo methods 
are unbiased RT solvers, and 6S itself was validated against Monte Carlo simulations 
(Kotchenova et al., 2006, 2008; Kotchenova and Vermote, 2007); these validations of 6S 
avoided high-absorption wavelengths (examples in Fig. 1.11b), and the reported up-to-1 % 
differences between 6S results and Monte Carlo benchmarks align with our observations at low-
absorption wavelengths (Fig. 1.4). Given that T-Mart and libRadtran showed consistently good 
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agreement in high-absorption settings (Fig. 1.2) and they were developed independently, we 
conclude that T-Mart produces accurate estimates of its modeled radiometric quantities. 
 
T-Mart also produced radiometric quantities in good agreement with measurement-derived 
values. In Case Studies 1 and 2, the modeled TOA reflectance matched Sentinel-2 observations 
across 47 lakes and along two transects in Lake Edward (Fig. 1.6 and Fig. 1.8). In Case Study 3, 
the effective sea-surface reflectance derived from measurements mostly fit the modeled values 
with a wind speed within 2 m/s of the recorded value, with few values outside the range where 
uncertainties were introduced by the chlorophyll concentrations used in the bio-optical model 
(Fig. 1.9). Although measurements may seem to be the best way to evaluate a model, they often 
come with their own uncertainties and can be influenced by changing environmental conditions. 
To fully compare a model to actual measurements, a closure experiment with complete input and 
output measurements is required. This is extremely challenging due to the large scale of ocean 
color remote sensing and the many factors that could affect the water, the atmosphere, and 
sometimes even the sensors. Assumptions are often made about the model input in model-versus-
measurement comparisons for specific applications; thus, the assumptions and their impact must 
be considered when applying the modeled results.  
 
We provide a special single-photon mode in T-Mart for users’ validation purposes. The series of 
movements of a single photon from launching to exiting the atmosphere can be visualized in a 
3D space (Fig. 1.1). Users can freely zoom and rotate the visualized modeled surface and photon 
movement in 3D through the Python matplotlib package, and the details of radiometric 
calculations at each movement are printed in the console. This allows users to examine the input 
surface topography and solar-viewing geometry and verify the calculated radiometric quantities.  
 
1.5.2 Contribution to aquatic remote sensing 
 
Existing RT models have limitations in modeling the TOA reflectance of coastal and inland 
waters. The widely used MODTRAN (Berk et al., 2014) and 6S (Vermote et al., 1997b) are both 
1D RT modeling tools; they are unsuitable for modeling waterbodies influenced by the 
adjacency effect such as the elevated NIR reflectance over lakes surrounded by vegetation 
(Section 1.4.1). The RT code SMART-G (Ramon et al., 2019) uses the Monte Carlo approach; it 
supports adjacency modeling but is limited to circular water surfaces surrounded by 
homogeneous land of uniform reflectance. MCARaTS (Iwabuchi and Okamura, 2017) is another 
RT code, and it was used to model the adjacency effect in Pan et al. (2022). However, the code is 
atmosphere-oriented and lacks support for modeling water’s radiative properties, such as water’s 
specular reflectance. In addition, MCARaTS was developed in Fortran, and it only supports 
Linux/UNIX-like operating systems, making it difficult to work with open-source tools. The 
work of Bulgarelli et al. (2014) and Bulgarelli and Zibordi (2018) simulated the adjacency effect 
in aquatic remote sensing in the northern Adriatic Sea, but the code is closed source and lacks 
support for arbitrary topography, which may affect the illumination conditions of inland 
waterbodies (Moses et al., 2017). libRadtran (Emde et al., 2016) is a publicly available library of 
multiple RT solvers. The 3D version of the MYSTIC solver is close to T-Mart in nature, but only 
the 1D version is publicly available. Although developed for atmospheric applications, according 
to the user guide, the 3D MYSTIC is capable of modeling the adjacency effect (Mayer et al., 
2020). However, the modeled space is cubic; if a photon leaves the modeled space through one 
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of the four horizontal sides, it re-enters the space through the opposite side (Mayer, 2009). The 
‘duplicate’ spaces may be sufficient for atmosphere and cloud modeling but are not suitable for 
modeling coastal and inland environments where water and land tend to exhibit non-duplicate 
features. In addition, the implementation of Cox-Munk’s equations in libRadtran for modeling 
ocean surfaces has not been validated (Mayer et al., 2020). 
 
T-Mart was developed to address the limitations described above. Foremost, T-Mart is the only 
publicly available RT model that allows the simulation of the adjacency effect on aquatic remote 
sensing in an arbitrary 3D space and provides a framework for developing and validating 
adjacency-correction tools in such an environment. All the RT models described above provide 
limited API support for extendibility, except 6S with its Python interface Py6S (Wilson, 2013) 
which allows users to access other Python functionality. T-Mart is exclusively written in Python, 
making it easy to work with the rich library of Python modules and allowing users to perform 
more complex tasks and create workflows within the Python environment. For example, users 
can import satellite images to T-Mart using the GDAL package in Python, as demonstrated in 
Section 1.4.2. The Python package Pycuda is used in SMART-G to run the GPU-accelerated 
code written in the C language, which requires NVIDIA GPUs. In practice, many computers lack 
NVIDIA GPUs, and even if they do, the multiple layers of APIs from Python to C and the 
hardware make version control and running the code difficult. On the other hand, T-Mart uses 
the native Python multiprocessing package to simplify installation and ensure the smooth 
running of the code. Code developed in Fortran or C languages requires compiling; this requires 
specific software environments and often comes with compatibility issues across operating 
systems. This is not an issue for T-Mart as it was developed in Python exclusively. 
 
In addition, T-Mart uses 6S parameterizations for atmospheric and aerosol settings through the 
use of Py6S (Wilson, 2013); therefore, studies or applications that use 6S can easily incorporate 
T-Mart into their workflows and extend 1D RT modeling to 3D modeling without changing these 
parameters. Applications of 6S in aquatic remote sensing include building look-up tables for 
atmospheric correction (Vanhellemont and Ruddick, 2018), developing sun-glint-correction 
algorithms (Harmel et al., 2018), and studying the adjacency effect of ice (Bélanger et al., 2007). 
The same-parameterization approach allows the continuity of past data processing and enhances 
the existing workflows with 3D capabilities and adjacency-effect modeling support. 
 
The radiative properties of shadowed water can also be calculated in T-Mart. Shadows contain 
information that is sometimes used in atmospheric correction; for example, Lee et al. (2007) used 
adjacent water pixels that are in and out of a cloud shadow to estimate 𝑅TUV, and ACOLITE uses 
shadows to retrieve AOTs (Vanhellemont and Ruddick, 2018). T-Mart can be a validation tool 
for such efforts. 
 
1.5.3 Case studies 
 
In Case Study 1, the variance of TOA NIR reflectance between 47 lakes of different sizes was 
largely explained by the adjacency effect (r2 = 0.837). This has an implication for atmospheric 
correction algorithms that assume negligible water-leaving radiance in the NIR band. These 
algorithms use the NIR reflectance to retrieve AOT; if the adjacency effect is not considered, 
AOT can be overestimated from the elevated TOA NIR reflectance due to the adjacent 
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vegetation, leading to over-correction of atmospheric effects and low and even negative 
reflectances at visible wavelengths (Moses et al., 2017). This also affects glint-correction 
algorithms. The statistical wave-slope-distribution approach often fails to estimate the 
reflectance of spatially resolved glint in high-resolution imagery that is commonly used in 
coastal and inland scenes (Kay et al., 2009). Another approach uses the NIR band to estimate 
glint reflectance on a pixel-by-pixel basis; it assumes water-leaving radiance is negligible in the 
NIR band after atmospheric correction, and it removes or minimizes glint by establishing a linear 
relationship between the glint reflectance in NIR and visible bands (Kay et al., 2009). As a result, 
the intertwined contribution from the glint and the adjacency effect needs to be separated to 
estimate AOT and glint reflectance in atmospheric correction processes to retrieve accurate water 
reflectance and the follow-up bio-optical properties. A challenge lies in the different spectral 
shapes of the two effects; while glint reflectance depends on the spectral refractive index of 
water, which changes very little in the visible spectrum (Quan and Fry, 1995), the spectral shape 
of the adjacency effect depends heavily on the surrounding environment. In areas dominated by 
vegetation, the impact of the adjacency effect will be larger in NIR wavelengths, where the 
vegetation is much brighter than water, than in the visible range. T-Mart provides a framework to 
forward-model the two effects and possibly derive inversion algorithms.  
 
The sensitivity analysis of the impact of various AOT and wind speed values showed that the 
TOA reflectance at NIR wavelengths increased with AOT and wind speed (Appendix B). The 
increased AOT seemed to have a greater effect on the high-reflectance (smaller) lakes, whereas 
the increased wind speed had a similar effect on all the lakes. By looking at waterbodies of 
different sizes, the waterbody-size dependency of AOT-induced 𝑅!+, and the less size-dependent 
𝑅WXGYU may help separate glint and adjacency-effect contributions in the atmospheric correction. 
Careful modeling and correction for glint and adjacency contribution are key to improving 
remote sensing of waterbodies similar to the lakes in the case study.  
 
In Case Study 2, T-Mart correctly modeled the TOA reflectance along the two transects and the 
increased reflectance approaching the shorelines over Lake Edward. The underestimated 
modeled TOA reflectance near the shorelines illustrates that the zero-water-leaving-radiance 
assumption does not hold in waters with possible turbidity, suspended particles, bottom 
reflectance, and biochemical processes (Boss et al., 2007). The fetch effect (Kahma, 1981) may 
have contributed to the lowered TOA reflectance over the narrowed southern part of the lake. It 
is also possible that the wind speed was not distributed evenly across the lake at the time of 
image acquisition; a lowered wind speed can lead to smaller waves and lowered glint reflectance. 
Similar findings were reported by Tilstone et al. (2020), where the effective wind speed was 
reduced by 30 % when the wave height was determined to be low in a coastal environment. 
Additionally, while the change in TOA reflectance as a function of distance to the shore may not 
provide enough information to derive both AOT and aerosol properties such as aerosol 
composition and size distribution, the magnitude and the rate of change may restrict the possible 
values of one given the other. 
 
In Case Study 3, the modeled sky remote-sensing reflectance and effective sea-surface 
reflectance aligned well with in-situ observations and field-data-derived values (Fig. 1.11a and 
Fig. 1.9, respectively). The differences between modeled and derived values in Fig. 1.9 mostly 
come from uncertainties in the chlorophyll concentrations used in the bio-optical model; this 
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highlights the challenge of choosing a value for 𝑟 in the field. This case study provides model 
support for Lee et al. (2010), raising concerns about the spectrally invariant assumption for 𝑟 in 
Mobley (1999). Such an assumption may only be valid when the sky is completely overcast, an 
environmental situation unconducive to ocean color remote sensing. The wide range of 𝑟 values 
(Fig. 1.10) illustrates the sensitivity of 𝑟 to wind speed and AOT as well as atmospheric and 
aerosol settings; this underscores the challenge of measuring 𝑅*$ using above-water approaches. 
Given that Cox-Munk’s equations were developed for ocean environments, and they do not 
necessarily hold for inland and coastal environments where waves' amplitude is limited by fetch 
and the size and depth of the waterbody; controlled experiments are desired to test the 
calculations and measurements of 𝑟 and 𝑅*$ in such environments.  
It was found that the change in 𝑆*$ at various AOTs has very little wavelength dependence (Fig. 
1.11a). A pure molecular sky at this viewing angle is exceptionally blue (AOT550 0.0 line in Fig. 
1.11a), and the increased 𝑆*$ from aerosol loading is evenly distributed across the spectrum, 
making the sky appear whiter. As a result, if the atmosphere and aerosol models are sufficiently 
accurate in the model, either the color or the line height of 𝑆*$ may be used to estimate AOTs. 
 
1.5.4 Installation and uses of T-Mart  
 
T-Mart can be installed using two short command-line calls:  

• conda install -c conda-forge Py6S  
• pip3 install tmart 

 
The dependencies of T-Mart are available on conda-forge, a community effort that ensures the 
compatibility of packages. T-Mart itself can be installed from the Python Package Index with a 
single command line. The entire installation of T-Mart and its dependencies can be completed in 
minutes. T-Mart runs on systems with Python support, and it is tested on macOS, Microsoft 
Windows, and Linux systems. 
 
Detailed instructions for T-Mart are available from https://tmart-rtm.github.io. Users are 
instructed to import data, run the code and visualize results. Guidance is also provided for 
configuring the atmospheric and surface settings, the radiometric quantities of interest, and the 
observation and illumination geometries.  
 
1.5.5 Future development  
 
T-Mart can be used to develop adjacency-correction algorithms. By default, the calculated RT 
results contain the entire trajectory of every photon including the movements and collision 
locations as well as the local-estimate weights (Eq. (1.8)); this information can be used to derive 
formulations for adjacency-effect correction. Due to T-Mart’s 3D nature, formulations at off-
nadir angles and with arbitrary surfaces can be derived, as opposed to solutions restricted to 
circular targets in Vermote et al. (1997b), Sei (2015), and Ramon et al. (2019). 
 
T-Mart can also be coupled with HydroLight to combine in-water RT with atmospheric and 
water-surface RT calculations. This can be done by providing HydroLight with the sky 
illumination computed by T-Mart, or by importing HydroLight-computed bidirectional 
reflectance distribution of water-leaving radiance into T-Mart. Polarization support will also be 

https://tmart-rtm.github.io/
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useful with a vector version of HydroLight, which is currently in development (J. Hedley, 
personal communication).  
 
1.6 Conclusion 
 
This article presents a Monte Carlo code, T-Mart, that simulates the transfer of light in a 3D 
ocean-land-atmosphere system. The code is the first open-source tool that considers surface 
irregularity of water and land in modeling the adjacency effect on water’s TOA reflectance, 
therefore suitable for RT over coastal and inland waters. It was exclusively developed in Python, 
allowing users to integrate it with the rich library of Python modules. T-Mart uses the same 
atmospheric and aerosol settings as 6S, facilitating existing workflows to transition from 1D to 
3D RT modeling with minimal effort. The code was validated by comparing simulations with 
libRadtran and 6S as well as satellite and in-situ measurements, which all showed good 
alignment.  
 
In three case studies, we demonstrated the use of the code, the importance of the adjacency effect 
in remote sensing of coastal and inland waters, and the wavelength dependence of the effective 
sea-surface reflectance. In Case Study 1, the adjacency effect explained 83.7 % of the variance in 
NIR TOA reflectance of 47 lakes in Minnesota, highlighting that the adjacency effect cannot be 
ignored in atmospheric correction for remote sensing of inland waters. The various spectral 
shapes of glint and the adjacency effect remain a challenge in atmospheric correction; T-Mart is 
capable of forward-modeling the additive contribution of the two effects, but the inversion 
problem remains to be investigated. In Case Study 2, the modeled and observed TOA reflectance 
in the NIR band matched each other along the two transects in Lake Edward; both reached their 
lowest values in the middle of the lake and gradually increased toward the shores. At the same 
time, there is a markedly elevated reflectance near the shores, likely from turbidity or bottom 
reflectance, invalidating the zero-water-leaving-reflectance assumption near the shores. In Case 
Study 3, modeled and field-data-derived 𝑟 aligned with each other, showing significant 
wavelength dependence as 𝑟 increases at longer wavelengths. In addition, the dependence of 𝑟 on 
AOT and wind speed was demonstrated. The magnitude of 𝑆*$ was found to depend on AOT, but 
the spectral shape of 𝑆*$ showed minimal AOT dependency; this makes it possible to infer AOT 
from either the color or the line height of 𝑆*$, given sufficiently accurate atmosphere and aerosol 
models.  
 
It is envisaged that T-Mart will provide a framework for the development and validation of 
physics-based methods that remove or minimize the adjacency effect in remote sensing of 
coastal and inland waters. This has the potential to improve the accuracy of retrieved water 
reflectance, the basis for optical retrieval of bathymetry and water quality information, in such 
environments.  
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1.7 Appendix A. Surface reflectance of water  
 
A1 Bidirectional and hemispherical-directional glint reflectances  
 
Bidirectional reflectance is the ratio of reflected radiant flux per unit solid angle surrounding a 
given direction to the collimated incident radiant flux (Schaepman-Strub et al., 2006). The 
bidirectional reflectance of glint is defined following Kay et al. (2009), 
 

 𝑅12)+#Z (𝜃$, 𝜙$, 𝜃,, 𝜙,) =
𝑝(𝜉, 𝜂)𝜌A*!$+!2(𝑛0, 𝜃))
4	cos[𝛽 cos(𝜃,) cos(𝜃$)

 (A1) 

 
where 𝑝(𝜉, 𝜂) is the Cox-Munk probability distribution of the wave slopes in Eq. (A3), 𝜌A*!$+!2 
(𝑛0, 𝜃)) is the Fresnel reflectance (Appendix A3) as a function of water’s refractive index (𝑛0) 
and the incidence angle (𝜃)), 𝛽 is the tilt of the water surface facet that reflects the incident light 
to the viewing direction, 𝜃, and 𝜃$ are the viewing and solar zenith angles, and 𝜙, and 𝜙$ are the 
viewing and solar azimuth angles, respectively.  
When the collimated direct solar irradiance is the only source of incident radiant energy, 𝑅12)+#′ 
can be used to estimate glint reflectance; however, with a diffuse illumination of sky light, the 
incident radiant energy from the entire hemisphere must be considered to derive the 
hemispherical-directional glint reflectance,  
 

 𝑅12)+#(𝜃,, 𝜙,) =
1
𝑁7 𝑅12)+#Z I𝜃$\ , 𝜙$\ , 𝜃,, 𝜙,K

]

\^_
 (A2) 

 
where 𝑁 is the number of reflection events at the water surface in the Monte Carlo simulation, 
and 𝜃$\ and 𝜙$\ are respectively the zenith and azimuth angles of the 𝑗th collimated incident 
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radiant flux. Eq. (A2) essentially calculates the reflected radiance in a specified direction given 
the combined direct and diffuse illumination conditions. 
 
A2 Cox-Munk wave-slope statistics  
 
The Cox-Munk slope statistics (Cox and Munk, 1954) describes the distributions of wave slopes 
of a wind-roughened sea surface as a function of wind speed and direction. It is widely used to 
model and remove glint from aquatic remote-sensing products. The probability of slopes can be 
calculated as 
 

 

𝑝(𝜉, 𝜂) =
1

2𝜋𝜎%𝜎.
exp g−

1
2
(𝜉` + 𝜂`)h

× g1 −
1
2 𝑐`_

(𝜉` − 1)	𝜂 −
1
6 𝑐Ka

(𝜂a − 3𝜂)

+
1
24 𝑐[K

(𝜉[ − 6𝜉` + 3) +
1
4 𝑐``

(𝜉` − 1)(𝜂` − 1)

+
1
24 𝑐K[

(𝜂[ − 6𝜂` + 3)h 

(A3) 

 
where 𝜉 and 𝜂 are the normalized slopes,  
 
 𝜉 = b'

c)
  and 𝜂 = b*

c+
, (A4) 

 
and 𝑧" and 𝑧E are the slopes (change in elevation over change in horizontal distance) along 
crosswind and upwind directions. The two slope variances (𝜎. and 𝜎% are for upwind and across 
wind directions, respectively) are calculated using the wind speed 𝑈 (m/s) at 12.5 m from the 
surface,  
 

 𝜎.` = 3.16 ∙ 10Ia𝑈 
𝜎%` = 1.92 ∙ 10Ia𝑈 + 0.003. (A5) 

 
The skewness and peakedness coefficients in (A3) are  
 
𝑐`_ = 0.01 − 0.0086𝑈, 𝑐Ka = 0.04 − 0.033𝑈, 𝑐[K = 0.40, 𝑐`` = 0.12, 𝑐K[ = 0.23. (A6) 

 
A3 Fresnel’s equation 
 
The law of refraction, also known as Snell’s law, states that,  
 
 𝑛_ sin 𝜃_ = 𝑛` sin 𝜃` (A7) 

 
where 𝑛_ and 𝑛` are the refractive indices of two media, and 𝜃_ and 𝜃` are interchangeably angle 
of incidence and angle of transmission. The refractive indices of air (𝑛&) and water (𝑛0) are 
usually taken as 1 and 1.34 at visible wavelengths. T-Mart allows user-specified 𝑛0 or calculates 
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𝑛d as a function of user-specified salinity, temperature, and wavelength according to equation 3 
in Quan and Fry (1995). 
 
The angle of transmission (𝜃#) is a function of the incidence angle (𝜃)) and the refractive indices 
of the two media. Take a light incident on the water from the air as an example, 
 

 𝜃# = sinI_(
n&
n0

sin 𝜃)). (A8) 

 
The fraction of this collimated incident irradiance reflected specularly by the air-water interface 
(i.e., not penetrating the surface) is then described by Fresnel’s equation for unpolarized light,  
 

 𝜌A*!$+!2(𝜃)) =
1
2 pq

sin	(𝜃) − 𝜃#)
sin	(𝜃) + 𝜃#)

r
`

+ q
tan	(𝜃) − 𝜃#)
tan	(𝜃) + 𝜃#)

r
`

s. (A9) 

 
A4 Whitecaps  
 
Whitecaps are the foamy crests of waves at the water surface. The whitecap model in T-Mart 
generally follows Mobley (2022) with modifications to the spectral dependence (Table A1). 
Whitecap reflectance is treated to be Lambertian, and it is calculated following Koepke (1984), 
 
 𝜌0B)#!%&C(𝜆) = 0.22 × 𝑎0B)#!%&C(𝜆) (A10) 

 
where 𝑎0B)#!%&C(𝜆) is a correction factor that describes the wavelength dependence of 𝜌0B)#!%&C. 
The values of 𝑎0B)#!%&C are presented in Table A1. 
 
Table A1. Normalized spectral dependence of whitecap reflectance. Source: Figure 3 of Frouin et al. (1996). 
Wavelength (nm) Value 
400 1 
444 1 
543 0.95 
663 0.92 
871 0.62 
1023 0.53 
1654 0.14 

 
The fraction of the sea surface covered by whitecaps (𝐹) is a function of wind speed, and it is 0 
at a wind speed of 6.33 m/s or lower (Stramska, 2003), 
 
 𝐹 = 8.75 × 10Ie(𝑈 − 6.33)a. (A11) 
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1.8 Appendix B. Modeled TOA reflectance of lakes as a function of 
AOT and wind speed 
 

 
Fig. B1. Modeled and observed TOA reflectance (band 8 of Sentinel-2 MSI, centered at 833 nm) of Lake 
centroids near Brainerd, Minnesota on September 21, 2020. AOT550 of 0.23, 0.28, and 0.33, and wind speeds 
of 3, 5, and 10 m/s were included. 𝑁,-./.0 = 1,000,000 for T-Mart runs. 
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remote sensing of coastal and inland waters  
 
Yulun Wua, Anders Knudbya, Nima Pahlevanb,c, David Lapend, Chuiqing Zenge 
 
aDepartment of Geography, Environment and Geomatics, University of Ottawa, Ottawa, ON, 
Canada  
bScience Systems and Applications Inc., Lanham, MD, USA 
cNASA Goddard Space Flight Center, Greenbelt, MD, USA 
dOttawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, 
Canada 
eEnvironment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, ON, 
Canada 
 
Abstract 
 
The adjacency effect distorts the top-of-atmosphere (TOA) spectral signals of coastal and inland 
waters and is a major challenge for optical remote sensing of nearshore aquatic environments. 
We introduce a closed-form expression that corrects for the adjacency effect prior to atmospheric 
correction. The method is included in an open-source Python tool, which ingests level-1 imagery 
and calculates the point-spread function of the atmosphere to convolve the input imagery. For 
each band, the difference between the observed and convolved reflectances is used to quantify 
and correct for the adjacency effect, i.e., pixels are corrected to the TOA reflectance they would 
have if surrounded by pixels of identical reflectance. Validation was conducted for Sentinel-2 
MSI and Landsat 8 OLI imagery against a global dataset of coincident in situ radiometric 
measurements. Results showed improved accuracy of water-leaving reflectance derived by 
atmospheric correction processors, including ACOLITE, POLYMER, and l2gen, when these 
were applied following adjacency-effect correction. For matchups within 200 m of shorelines (n 
= 212), adjacency-effect correction resulted in an average 16.7 % reduction in root mean squared 
error, a 32.4 % reduction in symmetric signed percentage bias, and a 36.8 % reduction in median 
symmetric accuracy for the three processors. The improvements were more significant in the 
near-infrared (NIR) range for ACOLITE, visible wavelengths for l2gen, and evenly distributed 
across the visible-NIR spectrum for POLYMER. We anticipate that this physics-based approach 
to adjacency-effect correction will lead to improved satellite-derived aquatic products for coastal 
and inland waters under diverse atmospheric and aquatic conditions.  
 
Keywords: aquatic remote sensing; adjacency effect; atmospheric correction; coastal waters; 
inland waters 
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2.1 Introduction 
 
In optical remote sensing, the adjacency effect (AE) refers to how adjacent surfaces influence the 
observed spectral signal of a target surface through atmospheric scattering (Tanré et al., 1987). 
The AE reduces the contrast between neighboring pixels with different reflectances and poses a 
challenge for quantitative remote sensing of nearshore waters adjacent to bright surfaces. The AE 
is commonly observed over coastal and inland waters in the near-infrared (NIR) wavelengths, in 
which adjacent vegetated land is much more reflective than water and the strong forward 
scattering of aerosols dominates atmospheric scattering (Sterckx et al., 2011). The magnitude of 
the AE depends on several factors, including the gas and aerosol composition of the atmosphere 
(Santer and Schmechtig, 2000), sun-sensor geometry (Vermote et al., 1997b), topography 
(Moses et al., 2017), land-cover type and sensor characteristics (Bulgarelli and Zibordi, 2018), 
the reflectance difference between the target and surrounding pixels (Wang et al., 2021a, 2021b), 
and the shape and size of waterbodies, with small waterbodies being more affected by the AE 
than large ones (Sterckx et al., 2015; Martins et al., 2019). 
 
The AE poses a significant challenge for atmospheric correction (AC) over inland and coastal 
waters, negatively affecting the characterization of atmospheric properties (Bulgarelli et al., 
2017) and the accuracy of satellite-derived aquatic data products (Warren et al., 2021). In such 
environments, inaccurate AC often leads to errors in the estimated surface reflectance, and those 
errors are propagated into the quantitative retrieval and analysis of biogeochemical variables, 
such as near-surface concentration of chlorophyll-a (Chl-a) and total suspended solids (TSS), as 
well as their spatial and temporal variability (Pahlevan et al., 2020). The heightened NIR 
reflectance over waters near vegetation can disrupt algorithms that use such wavelengths to 
derive aerosol optical thickness (AOT), resulting in overestimated AOTs and subsequent 
overcorrection of surface reflectance in visible wavelengths (Hieronymi et al., 2023). In coastal 
and productive waters where NIR reflectance is non-negligible (Wang and Shi, 2005), separating 
the NIR contributions from the AE and water itself is therefore essential for effective AC and 
bio-optical modeling. Considering the sensitivity of aquatic remote sensing products to even 
minor sources of noise, evaluating and correcting for the AE is crucial in remote sensing of 
freshwater and coastal aquatic environments (Bulgarelli and Zibordi, 2018). 
 
The problem of the AE for satellite observations has been investigated for decades (Bélanger et 
al., 2007; Bulgarelli et al., 2014; Bulgarelli and Zibordi, 2018; Sterckx et al., 2011; Tanré et al., 
1987; Vermote et al., 1997a; Wang et al., 2021a), and various methods have been developed to 
address this challenge for aquatic applications. Correcting for the AE requires knowledge of the 
point spread function (PSF) of the atmosphere, which describes the spatial origin of diffuse 
radiation and how radiation from various surface locations contributes to at-sensor measurements 
(Sei, 2015). Various approaches have been taken to characterize the PSF. One approach to obtain 
the PSF and correct for the AE is to use the computationally efficient primary scattering 
approximation (Santer and Schmechtig, 2000). For example, the primary scattering 
approximation was employed in the sensor-generic AE correction algorithm developed by 
Kiselev et al. (2015), which was integrated into the Modular Inversion and Processing system for 
deriving biophysical parameters from at-sensor radiance measurements (Heege and Fischer, 
2004). Similarly, the Improved Contrast between Ocean and Land (ICOL) processor, developed 
for correcting the AE in MERIS data, also employs the primary scattering assumption (Santer 
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and Sterckx, 2013). ICOL incorporates simplified formalisms for the influence of clouds and a 
land mask to adjust the diffuse component of Fresnel reflection of the water surface in the 
presence of the AE. The performance of ICOL has not been reported consistently across the 
literature: while Odermatt et al. (2010) found improved retrieval of Chl-a from MERIS data in 
six perialpine lakes in Europe, Binding et al. (2011) noted that ICOL did not notably improve 
water constituent retrievals in Lake of the Woods at the Canada-US border. 
 
Another approach to characterizing the PSF involves formulations derived from Monte Carlo 
simulations (Vermote et al., 1997a, 2006; Tanré et al., 1981; Sei, 2015; Reinersman and Carder, 
1995). Martins et al. (2019) and Paulino et al. (2022) extracted the contribution of the AE 
through the formulae of PSF parameterized from Monte Carlo simulations in Vermote et al. 
(2006). While these derived formulations allow quick computation, they are limited by the 
assumption that environmental weights only depend on diffuse transmittances and distance from 
the neighboring pixel to the target pixel, neglecting the importance of observation geometry in 
the AE (Bulgarelli et al., 2014). Moreover, these formulations were derived using a single 
aerosol model from McClatchey et al. (1971), thereby ignoring the diversity of aerosol types and 
their varying optical characteristics. Similarly, Reinersman and Carder (1995) computed the PSF 
for a simulated sensor at an altitude of 20 km through Monte Carlo methods, and they 
implemented an iterative approach to correct for the AE at the surface level. In this approach, 
surface reflectance is first estimated in the absence of AE correction, then modified iteratively 
until the simulated TOA reflectance matches the observed reflectance. Although the iterative 
process has had preliminary successes, it can be computationally costly and not all pixels across 
the scene may converge at the same iteration, highlighting the value of a non-iterative approach. 
 
The SIMilarity Environment Correction (SIMEC) approach also employs the PSF from Vermote 
et al. (2006), but it compensates for the function’s limitations by comparing the retrieved spectra 
with the spectral shape of deep natural waters (Sterckx et al., 2011, 2015). SIMEC is 
incorporated in the iCOR AC processor (De Keukelaere et al., 2018). It operates on the 
assumption that water’s spectral shape in the red-edge-to-NIR range is stable for a wide range of 
water biophysical properties, and that any deviation from this shape is a result of the AE or errors 
in atmospheric correction. Relying on two bands in the red-edge and NIR range, SIMEC 
iteratively adjusts the reflectance of water pixels by removing the PSF-weighted-average 
reflectance until a predetermined spectral shape is achieved. However, bottom reflectance in 
shallow waters, extreme turbidity, high algal concentrations, or sunglint can significantly alter 
water reflectance from the predetermined spectral shape (Sterckx et al., 2011, 2015; Paulino et 
al., 2022). This limits the use of SIMEC for imagery captured by instruments not designed for 
ocean-color studies, such as Landsat 8 Operational Land Imager (OLI) and Sentinel-2 
MultiSpectral Instrument (MSI), as these sensors are usually not maneuvered to minimize 
sunglint. In addition, SIMEC’s deep-water assumption needs to be revised for applications to 
satellite-derived bathymetry and bottom habitat mapping, which rely on the magnitude and 
spectral shape of bottom reflectance. Despite significant progress, challenges thus remain in 
developing and applying AE correction methods. There is a need for an open-source, non-
iterative, and fully physics-based adjacency-correction method that does not assume the spectral 
shape of the target, considers multiple scattering, and utilizes up-to-date ancillary atmosphere 
and aerosol data.  
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Here we derive a set of equations to perform AE correction with fewer assumptions and 
approximations than the studies described above, and present an open-source preprocessing tool 
that implements them as an addition to the Topography-adjusted Monte-carlo Adjacency-effect 
Radiative Transfer code (T-Mart, Wu et al., 2023). The tool ingests level-1 images along with 
ancillary atmospheric and aerosol data from the NASA Ocean Biology Processing Group 
(OBPG, 2023), calculates the PSF of the atmosphere using the ancillary data for each band, and 
uses it to convolve the level-1 imagery. Top-of-atmosphere (TOA) reflectance is then modified 
to adhere to the homogeneous-surface assumption implicit in most AC tools, i.e., pixels are 
corrected to the TOA reflectance they would have if surrounded by pixels of identical 
reflectance. The operation is done at the TOA-reflectance level; it can thus be followed by AC 
tools of the user’s choice, maximizing the AC efforts developed for different environmental 
conditions. For example, POLYMER performs well in moderately glint-covered environments 
(Steinmetz and Ramon, 2018), and ACOLITE performs well in productive waters (Pahlevan et 
al., 2021). The tool currently supports Sentinel-2 MSI, Landsat 8/9 OLI, and PRISMA data 
products, and is freely available on GitHub. 
 
We first present the methodology behind the AE correction, and then demonstrate its utility by 
comparing surface reflectance derived by three state-of-the-art AC processors, with and without 
prior AE correction, against in situ measurements from a global dataset. Sentinel-2 MSI and 
Landsat 8 OLI imagery were selected for evaluation due to their relatively high spatial resolution 
and abundant matchups with in situ reflectance spectra. The focus of this article is not to 
compare the performance of the three AC processors, but rather to demonstrate the 
improvements AE correction offers to products derived from each processor.  
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2.2 Methods 
 
Table 2.1. Symbols and acronyms used in this article.  

Symbol Definition 
𝜌345 Measured at-sensor reflectance at the TOA level 

𝜌345I5fI/*!! Adjacency-effect-free 𝜌345 

𝜌345R5  Atmospheric intrinsic reflectance due to Rayleigh and aerosol scattering at 
the TOA level 

𝜌′345 Surface reflectance propagated to the TOA level 
𝜌′345I5fI/*!! Adjacency-effect-free 𝜌′345 

𝜌345()*  Director component of 𝜌′345 
𝜌345()//  Diffuse component of 𝜌′345 
𝜌$ Surface reflectance of the target pixel 
𝜌$. Surface reflectance of an infinite uniform Lambertian target 
𝜌$!+, PSF-weighted average surface reflectance around the target pixel 
𝜌0 Water-leaving reflectance 
𝑅*$ Remote sensing reflectance (sr-1) 
𝑆 Spherical albedo of the atmosphere 
𝛼 Wavelength-dependent scaling factor used in adjacency-effect correction 

𝑐𝑐 Fraction of at-sensor diffuse radiation that comes from the central cell of the 
PSF 

𝑇R5 Total upward or downward atmospheric transmittance due to Rayleigh and 
aerosol scattering and absorption 

𝑡( Diffuse upward transmittance 
𝜏 Combined atmospheric aerosol and molecular optical thickness 
𝜇$ Cosine of the solar zenith angle 
𝜇, Cosine of the view zenith angle 
AC Atmospheric correction 
AE Adjacency effect 

AOT Aerosol optical thickness 
AOT550 Aerosol optical thickness at 550 nm 
Chl-a Chlorophyll-a 
NIR Near infrared  
PSF Point-spread function 

SWIR Shortwave infrared 
TOA Top of atmosphere 
TSS Total suspended solids  
𝛽 Symmetric signed percentage bias (%) 
𝜀 Median symmetric accuracy (%) 

RMSE Root mean squared error 
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2.2.1 Adjacency-effect correction 
 
In this section, we derive a set of equations to perform AE correction. These are first summarized 
in Section 2.2.1.1, followed by a detailed derivation in Section 2.2.1.2. Variables are defined in 
both sections for readability.   
 
2.2.1.1 Derived equations 
 
The output of the AE correction algorithm is the adjacency-effect-free TOA reflectance 
(𝜌345I5fI/*!!), which represents the TOA reflectance pixels would exhibit if each pixel were 
surrounded by pixels of identical reflectance. The calculation of 𝜌345I5fI/*!! for a single pixel 
is summarized in Eq. (2.1),  
 

 
𝜌345I5fI/*!! = 𝜌345R5 + 𝜌′345I5fI/*!!

_Ig#&,-∙i
_Ig#∙i

, where 
𝜌′345I5fI/*!! = 𝜌′345 − 𝛼(𝜌′345 ∗ 𝑃𝑆𝐹 − 𝜌′345), where 

𝜌′345 = 𝜌345 − 𝜌345R5  and 𝛼 = (1 − 𝑐𝑐) U.(k-)
!"C(IJ/k-)

.	
(2.1) 

 
In Eq. (2.1), 𝜌345R5  is the atmospheric intrinsic reflectance due to Rayleigh and aerosol scattering 
at the TOA level, 𝜌$ is the surface reflectance of the target pixel, 𝜌$!+, is the PSF-weighted 
average surface reflectance around the target pixel, 𝑆 is the spherical albedo of the atmosphere, 
𝑃𝑆𝐹 is the atmospheric point-spread function, 𝜌345 is the measured at-sensor reflectance at the 
TOA level, 𝑐𝑐 represents the fraction of at-sensor diffuse radiation that comes from the central 
cell of the PSF where the target pixel is located, 𝑡( is the diffuse upward transmittance, 𝜏 is the 
combined atmospheric aerosol and molecular optical thickness, and 𝜇, is the cosine of the view 
zenith angle. Detailed derivation of Eq. (2.1) is presented in Section 2.2.1.2. 
 
2.2.1.2 Derivation  
 
When the surface is uniform and Lambertian, the measured at-sensor spectral reflectance at the 
TOA level (upwelling radiance multiplied by 𝜋 and divided by downwelling irradiance, 
dimensionless), 𝜌345, can be expressed as (Vermote et al., 1997a):  
 

 𝜌345 =	𝜌345R5 +
𝜌$. ∙ 𝑇R5(𝜇$) ∙ 𝑇R5(𝜇,)

1 − 𝜌$. ∙ 𝑆
	 (2.2) 

 
where 𝜌345R5  is the atmospheric intrinsic reflectance due to Rayleigh and aerosol scattering at the 
TOA level, 𝜌$. is the reflectance of an infinite uniform Lambertian target, 𝑇R5(𝜇$) and 𝑇R5(𝜇,) 
are the total downward and upward atmospheric transmittances with 𝜇$ and 𝜇, being the cosine 
of the solar zenith angle and view zenith angle, respectively, and 𝑆 is the spherical albedo of the 
atmosphere. All these variables except the zenith angles have a wavelength dependence, which is 
omitted here and after for brevity. Symbols and acronyms are summarized in Table 2.1. 
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When considering surface heterogeneity, 𝜌345 can be rewritten by decoupling the signals 
coming directly from the target from those coming from adjacent areas and scattered into the 
target-sensor path (Vermote et al., 1997a):  
 

 𝜌345 =	𝜌345R5 +
𝜌$ ∙ 𝑇R5(𝜇$) ∙ exp	(−𝜏/𝜇,) + 𝜌$!+, ∙ 𝑇R5(𝜇$) ∙ 𝑡((𝜇,)

1 − 𝜌$!+, ∙ 𝑆
	 (2.3) 

 
where 𝜌$ is the surface reflectance of the target pixel, 𝜏 is the combined atmospheric aerosol and 
molecular optical thickness, 𝑡((𝜇,) is the diffuse upward transmittance which is a function of 𝜇,, 
and 𝜌$!+, is the PSF-weighted average surface reflectance around the target pixel. The size of the 
target pixel is assumed to be infinitesimally small in Eq. (2.3) because 𝜌$ does not contribute to 
diffuse radiation at the TOA level in the equation and 𝜌$!+, is calculated for a continuous surface, 
as shown in Eqs. (2.4) and (2.5). This assumption is removed starting in Eq. (2.16). For a 
continuous surface,	𝜌$!+, at (𝑥K, 𝑦K) can be expressed as,  
 

 𝜌$!+,(𝑥K, 𝑦K) = 	� � 𝜌$(𝑥, 𝑦; 𝑥K, 𝑦K) ∙ 𝑃𝑆𝐹(𝑥, 𝑦; 𝑥K, 𝑦K; 𝜇,)	𝑑𝑥	𝑑𝑦
no

Io

no

Io
	 (2.4) 

 
where 𝜌$(𝑥, 𝑦; 𝑥K, 𝑦K) is the surface reflectance located at coordinates (𝑥, 𝑦) in reference to the 
target at (𝑥K, 𝑦K), and 𝑃𝑆𝐹(𝑥, 𝑦; 𝑥K, 𝑦K; 𝜇,) is the weight of the atmospheric PSF at (𝑥, 𝑦) 
towards the target at (𝑥K, 𝑦K), i.e., the percent contribution to the diffuse transmission per unit 
area of an isotropic source placed at (𝑥K, 𝑦K). The PSF can be expressed as a double integral over 
the 𝑥 and 𝑦 directions, with the weights summed to 1:  
 

 ∫ ∫ 𝑃𝑆𝐹(𝑥, 𝑦; 𝑥K, 𝑦K; 𝜇,)	𝑑𝑥	𝑑𝑦
no
Io

no
Io = 1.	 (2.5) 

 
Since 𝜌345R5  describes photons that never reach the surface, it is independent of the adjacency 
problem and thus can be temporarily removed from the TOA reflectance in Eq. (2.3) in the AE 
correction,  
 

 𝜌′345 = 𝜌345 −	𝜌345R5 =	
𝜌$ ∙ 𝑇R5(𝜇$) ∙ exp	(−𝜏/𝜇,) + 𝜌$!+, ∙ 𝑇R5(𝜇$) ∙ 𝑡((𝜇,)

1 − 𝜌$!+, ∙ 𝑆
	 (2.6) 

 
where 𝜌′345 is the surface reflectance propagated to the TOA level. For brevity, we separate the 
direct and diffuse components of 𝜌′345 in Eq. (2.6),  
 

 

𝜌′345 =	𝜌345()* (𝜌$) + 𝜌345()// (𝜌$!+,),	where	
𝜌345()* (𝜌$) =

g#∙p/0(k#)∙!"C	(IJ/k-)
_Ig#&,-∙i

,	and	

𝜌345()// (𝜌$!+,) =
g#&,-∙p/0(k#)∙U.(k-)

_Ig#&,-∙i
.	

(2.7) 

 
As an essential step of the AE correction, 𝜌′345 is convolved with the PSF as the kernel. The 
convolved form, 𝜌′345 ∗ 𝑃𝑆𝐹, can be expressed as, 
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 𝜌′345 ∗ 𝑃𝑆𝐹 = 𝜌345()* (𝜌$) ∗ 𝑃𝑆𝐹 + 𝜌345()// (𝜌$!+,) ∗ 𝑃𝑆𝐹.	 (2.8) 

 
The spatial dependence of 𝜌′345, 𝜌$, and 𝜌$!+, during the convolution process is omitted in Eq. 
(2.8) for brevity; unless specified otherwise, henceforth all reflectance terms refer exclusively to 
the target pixel when a convolution is involved. The convolution process assumes horizontal 
homogeneity of aerosols in the scene, an assumption commonly made in AC processes (Guanter 
et al., 2010; Vidot and Santer, 2005; Sterckx et al., 2015); the need for such an assumption is 
discussed in Section 2.4.5. Substituting Eq. (2.4) into Eq. (2.8), we get an updated version of Eq. 
(2.8),  
 

 
𝜌′345 ∗ 𝑃𝑆𝐹 = 𝜌345()* (𝜌$!+,) + 𝜌345()// (𝜌$!+,) ∗ 𝑃𝑆𝐹,	where	

𝜌345()* (𝜌$!+,) =
g#&,-∙p/0(k#)∙!"C	(IJ/k-)

_Ig#&,-∙i
. (2.9) 

 
In practice, pixels have a non-negligible size and there is a finite number of pixels. The 
corresponding PSF is then a matrix with the weights still summed to 1:  
 

 7 7 𝑃𝑆𝐹(𝑥, 𝑦; 𝑥K, 𝑦K; 𝜇,)
q

r^Iq

s

t^Is
= 1	 (2.10) 

 
where 𝑋 and 𝑌 are the extents of the image in 𝑥 and 𝑦 directions, respectively. Detailed 
computation of PSFs is presented in Section 2.2.2. For each target pixel, the convolution process 
multiplies each pixel value within the PSF’s range by its corresponding PSF weight and sums up 
all these products over both 𝑥 and 𝑦 directions. For example, 𝜌345()// (𝜌$!+,) ∗ 𝑃𝑆𝐹 in Eqs. (2.8) and 
(2.9) for the target pixel located at (𝑥K, 𝑦K) can be expressed as,  
 
𝜌345()// I𝜌$!+,(𝑥K, 𝑦K)K ∗ 𝑃𝑆𝐹	

= 	7 7 𝜌345()// (𝜌$!+,(𝑥, 𝑦; 𝑥K, 𝑦K)) ∙ 𝑃𝑆𝐹(𝑥, 𝑦; 𝑥K, 𝑦K; 𝜇,)
q

r^Iq

s

t^Is
	 (2.11) 

 
where 𝜌345()// (𝜌$!+,(𝑥, 𝑦; 𝑥K, 𝑦K)) is the value of 𝜌345()// (𝜌$!+,) located at coordinates (𝑥, 𝑦) in 
reference to the target pixel at (𝑥K, 𝑦K). 
 
The core of the described AE correction is to use 𝜌′345 in Eq. (2.7) and its convolved form, 
𝜌′345 ∗ 𝑃𝑆𝐹 in Eq. (2.9), to derive the adjacency-effect-free surface reflectance propagated to 
the TOA level, 𝜌′345I5fI/*!!, which is defined as:  
 

 
𝜌′345I5fI/*!! =	

g#∙p/0(k#)∙p/0(k-)
_Ig#&,-∙i

= 𝜌345()* (𝜌$) + 𝜌345()// (𝜌$),	where	

𝜌345()// (𝜌$) =
g#∙p/0(k#)∙U.(k-)

_Ig#&,-∙i
.	

(2.12) 

 
In Eq. (2.12), 𝜌$!+, instead of 𝜌$ is in the denominator of both direct and diffuse components of 
𝜌′345I5fI/*!!, meaning that the change in surface irradiance due to spherical albedo and surface 
heterogeneity is not yet corrected for; this is addressed later in Eq. (2.20). When the surface is 
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homogeneous, i.e., the surrounding environment has the same spectral properties as the target, 
𝜌′345, 𝜌′345 ∗ 𝑃𝑆𝐹, and 𝜌′345I5fI/*!! are all equal. When the surface is heterogeneous, their 
values can be different, and we denote the ratio of the difference between 𝜌′345 and 
𝜌′345I5fI/*!! (𝐴 in Fig. 2.1) to the difference between 𝜌′345 ∗ 𝑃𝑆𝐹 and 𝜌′345 (𝐵 in Fig. 2.1) as 
𝛼:  
 

 𝛼 =
𝐴
𝐵 =

𝜌′345 − 𝜌′345I5fI/*!!
𝜌′345 ∗ 𝑃𝑆𝐹 − 𝜌′345

.	 (2.13) 

 

 
Fig. 2.1. Illustration of the removal of the adjacency effect from TOA reflectance. 𝜌′$%& denotes surface 
reflectance propagated to the TOA level. Variables 𝐴 and 𝐵 represent the numerator and denominator of Eq. 
(2.13), respectively. The ratio of 𝐴 to 𝐵, or 𝛼 in Eq. (2.13), determines the magnitude of adjacency-effect 
correction to be made.  
 
Once 𝛼 and the PSF are obtained, 𝜌′345I5fI/*!! can be calculated for each pixel by rearranging 
Eq. (2.13),  
 

 𝜌′345I5fI/*!! = 𝜌′345 − 𝛼I𝜌Z345 ∗ 𝑃𝑆𝐹 − 𝜌
Z
345K.	 (2.14) 

 
Here we first attempt to solve for 𝛼 while preserving the assumption of infinitesimally small 
pixel size. Substituting Eq. (2.7), (2.9), and (2.12) into Eq. (2.13), we get Eq. (2.15) which solves 
for 𝛼,  
 
 

𝛼 = g120
.344 (g#&,-)Ig120

.344 (g#)
g120
.35 (g#&,-)Ig120

.35 (g#)ng120
.344 (g#&,-)∗viwIg120

.344 (g#&,-)
. (2.15) 

 
Removing the assumption of infinitesimally small pixel size, we now denote the weight of the 
central cell in the convolution kernel as 𝑐𝑐. Variable 𝑐𝑐 characterizes the amount of at-sensor 
diffuse radiation that comes from the target pixel, 𝜌$. This amount is usually small but can be 
non-negligible for large pixel sizes, ranging from 0.003 to 0.006 for 10-m resolution sensors, 
0.01 to 0.02 for 30-m resolution sensors, and 0.1 to 0.3 for 1000-m resolution sensors from 
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visible to NIR wavelengths, under common coastal satellite-observation conditions with 
maritime or continental aerosols and an AOT550 between 0.05 and 0.3, according to T-Mart 
simulations (Section 2.2.2). With a non-negligible 𝑐𝑐, we add the diffuse radiation from 𝜌$ to 
𝜌345()// (𝜌$!+,) and remove the corresponding contribution from 𝜌$!+,,  
 

 𝜌345()// (𝜌$!+,) → (1 − 𝑐𝑐) ∙ 𝜌345()// (𝜌$!+,) + 𝑐𝑐 ∙ 𝜌345()// (𝜌$). (2.16) 

 
With the change in Eq. (2.16) and following Eq. (2.4), 𝜌′345 in Eq. (2.7) and 𝜌′345 ∗ 𝑃𝑆𝐹 in Eq. 
(2.9) now become, 
 
 

𝜌′!"# =	𝜌!"#$%& (𝜌')+ (1 − 𝑐𝑐) ∙ 𝜌!"#$%(( (𝜌')*+) + 𝑐𝑐 ∙ 𝜌!"#$%(( (𝜌') 
𝜌′!"# ∗ 𝑃𝑆𝐹 = 𝜌TOA

dir /𝜌s
env0 + (1 − 𝑐𝑐) ∙ 𝜌!"#$%(( (𝜌')*+) ∗ 𝑃𝑆𝐹 + 𝑐𝑐 ∙ 𝜌!"#$%(( /𝜌s

env0. (2.17) 

 
Substituting Eq. (2.12) and (2.17) into Eq. (2.13), we then get an updated version of Eq. (2.15) 
that considers the contribution of diffuse radiation from the target pixel, 
 

 
𝛼 =

(1−𝑐𝑐)∙	}g120
.344 (g#&,-)Ig120

.344 (g#)~

g120
.35 (g#&,-)Ig120

.35 (g#)n(1−𝑐𝑐)∙𝑈1+𝑐𝑐∙𝑈2
 with 

𝑈3=𝜌345()// (𝜌$!+,) ∗ 𝑃𝑆𝐹 − 𝜌345()// (𝜌$!+,) 
𝑈4=𝜌345()// (𝜌$!+,) − 𝜌345()// (𝜌$). 

(2.18) 

 
Eq. (2.18) is a closed-form expression of 𝛼; however, in practice, (1 − 𝑐𝑐) ∙ 𝑈_ and 𝑐𝑐 ∙ 𝑈` are 
difficult to solve as they require characterization of surface reflectance for an area equal to or 
larger than the PSF’s range. Excluding the two terms leads to a bias approximately an order of 
magnitude smaller than the noise levels of OLI and MSI in the visible-to-SWIR range because 
the terms are negligible compared to 𝜌345()* (𝜌$!+,) − 𝜌345()* (𝜌$) (Supplementary material 1). After 
removing (1 − 𝑐𝑐) ∙ 𝑈_ and 𝑐𝑐 ∙ 𝑈`, Eq. (2.18) can be simplified to,  
 

 𝛼 = (1 − 𝑐𝑐)
𝑡((𝜇,)

exp(−𝜏/𝜇,)
.		 (2.19) 

 
Eq. (2.19) shows that the magnitude of the AE correction depends on the ratio of diffuse 
transmittance to direct transmittance. It is also reduced by 𝑐𝑐, as diffuse radiation from the target 
itself does not need to be corrected for. 
The three parameters needed to calculate 𝛼 in Eq. (2.19) are 𝑐𝑐, 𝑡(, and 𝜏 (as 𝜇, comes from the 
image metadata). All the three parameters are calculated through radiative transfer modeling in 
T-Mart (Wu et al., 2023) with the following input: 

• Sun-sensor geometry: from image metadata,  
• Sensor resolution and band spectral responses: from image metadata,  
• Atmospheric information: ozone and water vapor concentrations are automatically 

retrieved from the GMAO MERRA2 meteorological dataset (Global Modeling and 
Assimilation Office, 2015a), hosted by the NASA Ocean Biology Processing Group 
(OBPG, 2023), and 



Chapter 2: Adjacency effect correction 

 45 

• Aerosol information: Angstrom exponent and single-scattering albedo from the GMAO 
MERRA2 aerosol dataset (Global Modeling and Assimilation Office, 2015b) are 
automatically retrieved and used to linearly interpolate the aerosol composition by 
linearly mixing continental and maritime aerosols (details in Supplementary material 2); 
mixed aerosols allow for a smooth transition from land to water. Aerosol optical thickness 
at 550 nm (AOT550) is also retrieved from the same dataset. 

 
Aerosol composition, AOT550, and ozone and water vapor concentrations are linearly 
interpolated in time, and are used to compute the optical properties of the atmosphere for each 
band using 6S through the Py6S Python interface (Wilson, 2013).  
 
While calculating the three AE correction parameters, T-Mart also calculates 𝜌345R5 , which is 
used for calculating 𝜌′345 in Eq. (2.6), as well as the PSF needed for calculating 𝜌′345 ∗ 𝑃𝑆𝐹. 
By default, 100,000 photons are launched in each band-specific simulation in T-Mart for these 
calculations. This setup has been validated against the discrete-ordinate solver in libRadtran 
(Emde et al., 2016), demonstrating a maximum difference of 0.6 % in extreme optical settings 
(Wu et al., 2023). 
 
After calculating 𝛼 in Eq. (2.19), 𝜌′345I5fI/*!! in Eq. (2.14) can be calculated. We then add 
𝜌345R5  back to the equation and correct for the change in ground-level irradiance due to surface 
heterogeneity,  
 

 
𝜌345I5fI/*!! = 𝜌345R5 +

𝜌$ ∙ 𝑇R5(𝜇$) ∙ 𝑇R5(𝜇,)
1 − 𝜌$ ∙ 𝑆

= 𝜌345R5 +	𝜌′345I5fI/*!! ∙
1 − 𝜌$!+, ∙ 𝑆
1 − 𝜌$ ∙ 𝑆

	
(2.20) 

 
where 𝜌345I5fI/*!! is the adjacency-effect-free TOA reflectance, which is the output of the 
algorithm and conforms to the surface-homogeneity assumption. In Eq. (2.20), the calculation of 
(1 − 𝜌$!+, ∙ 𝑆)/(1 − 𝜌$ ∙ 𝑆)	for all pixels across a scene is done by computing a scene-specific 
lookup table for each band. A scene-wide (1 − 𝜌$!+, ∙ 𝑆) is calculated with the first-estimate 
scene-average surface reflectance employed as 𝜌$!+,, and (1 − 𝜌$ ∙ 𝑆) is calculated for 𝜌$ at 0, 
0.25, 0.5, 0.75, and 1 for interpolation. The value of (1 − 𝜌$!+, ∙ 𝑆)/(1 − 𝜌$ ∙ 𝑆) is then linearly 
interpolated by employing the 2D array of g

6
120708745&&

p/0(k#)∙p/0(k-)
 as 𝜌$. Lastly, the irradiance correction 

is completed in an element-wise multiplication of the two arrays 𝜌′345I5fI/*!! and 
(1 − 𝜌$!+, ∙ 𝑆)/(1 − 𝜌$ ∙ 𝑆). 
 
In the image being processed, 𝜌345 is replaced by 𝜌345I5fI/*!!	for each water pixel as the final 
step of the correction. Identification of water pixels follows ACOLITE (Vanhellemont, 2023), 
with the following criteria: 1) 𝜌345 < 0.3 in all bands, 2) 𝜌345 at 1600 nm < 0.0215, and 3) 𝜌345 
in the cirrus band at 1373 nm < 0.005, if available. By default, land pixels remain unchanged 
throughout the correction to facilitate the existing calibration of processors that extract 
information from land pixels, such as the dark spectrum fitting technique in ACOLITE that 
sometimes retrieves AOT from shadowed pixels (Vanhellemont and Ruddick, 2018). The option 
of AE correction for all pixels, including both land and water, is available in the tool’s settings. 
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2.2.2 Calculation of the atmospheric point-spread function 
 
The RTM solver in T-Mart is used to calculate the wavelength-dependent atmospheric PSF. For 
one band or wavelength at a time, a PSF is determined using atmospheric optical properties and 
the observation geometry as inputs. Ancillary ozone and water vapor concentrations, as well as 
aerosol loading and composition, are first used to construct the optical properties of the 
atmosphere (Section 2.2.1.2). User-defined gas and aerosol settings are also supported. These 
optical properties are calculated for each band, given the sensor’s spectral response functions, 
using 6S via the Py6S Python interface (Wilson, 2013). 
 
The PSF in T-Mart (Wu et al., 2023) is a square matrix of numerical values centered on the 
target pixel. The sum of the values in a PSF is normalized to 1, with the central cell, where the 
target pixel is located, usually having the largest weight. The calculation of the PSF employs a 
backward Monte Carlo radiative transfer solver. For each band, photons are launched from the 
sensor towards the target, following the sensor’s viewing direction. Each photon carries an initial 
weight of 1 upon entering the atmosphere, with the weight decreasing as the photon travels 
through the atmosphere due to absorption. Photons that reach the surface after at least one 
scattering event in the atmosphere are tallied. A grid centered on the target pixel is generated, 
with photons binned in the grid according to their coordinates relative to the target (Eq. (2.10)). 
In each cell, the sum of the photons’ remaining weights constitutes the cell’s value in the PSF 
matrix. An example PSF at 400 nm is provided in Fig. 2.2; PSFs at longer wavelengths are 
typically more pointed due to the stronger forward scattering of aerosols at longer wavelengths.  
 

 
Fig. 2.2. Example atmospheric optical properties and atmospheric point-spread function (PSF) at 400 nm. (a) 
Scattering and absorption coefficients as a function of altitude. (b) A normalized PSF with a width and height 
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of 36 km, where the weights of all cells sum to 1. The resolution of the PSF is reduced here to illustrate its 
matrix structure; actual processing uses the sensor’s resolution. Settings: mid-latitude summer atmosphere, 
maritime aerosol composition, AOT550 = 0.1, solar zenith angle = 45°, view zenith angle = 170°, and relative 
azimuth angle = 45°. 
 
By default, the PSF is stored in a 36 × 36 km matrix with the sensor’s resolution as the cell size; 
this can be modified by the user. The 36 × 36 km range was chosen to balance performance and 
computational cost. Tanré et al. (1987) demonstrated that approximately 50 % of environmental 
radiance comes from the adjacent area within a 1 km radius of the target, with the rate of 
increase dropping as the radius extends, covering over 80 % and 90 % of environmental radiance 
within a 10 km radius of the target at 450 nm and 850 nm, respectively, under various 
atmospheric conditions. The at-sensor diffuse radiance from outside the kernel (approximately 
0.1-5 % of the total at-sensor diffuse radiance from shortwave infrared (SWIR) to visible bands) 
is included by assuming it follows the same spatial pattern and magnitude as the at-sensor diffuse 
radiance within the kernel. To ensure AE correction is applied across the entire image, pixel 
values outside the scene were assumed to be homogeneously equal to the scene-average 𝜌′345 
when convolving 𝜌′345 near the edges. The PSF spans 1201 × 1201 pixels for the 30 m Landsat 
8 OLI bands and 3601 × 3601 pixels for the 10 m Sentinel-2 MSI bands, each covering a 
window slightly larger than 36 × 36 km. This ensures that the PSF dimensions are odd numbers. 
For bands with different spatial resolutions, such as the 20 m and 60 m MSI bands, the PSF sizes 
are adjusted accordingly to maintain the 36 × 36 km coverage. 
 
2.2.3 Validation 
 
2.2.3.1 In situ dataset  
 
Validation of the AE-correction tool was conducted by deriving water-leaving reflectance (𝜌0) 
using three state-of-the-art AC processors, with and without AE correction, and comparing the 
results to globally distributed in situ remote sensing reflectance (𝑅*$) measurements from the 
GLORIA dataset (Lehmann et al., 2023). The two radiometric quantities, 𝜌0 and 𝑅*$, are defined 
and related as  
 
 𝜌0 = 𝜋 ∙ 𝐿0Kn/𝐸(Kn = 𝜋 ∙ 𝑅*$ (2.21) 

 
where 𝐿0Kn and 𝐸(Kn are the water-leaving radiance and down-welling irradiance right above the 
water surface, respectively (Mobley, 2022). 
 
Google Earth Engine (Gorelick et al., 2017) was first used to identify matchups between in situ 
measurements from GLORIA, excluding the spectra flagged as ‘Suspect’ for quality control, and 
Sentinel-2 and Landsat 8 satellite overpasses. The criteria used to identify matchups were: 1) 
only in situ measurements within 200 m of shores, where the AE is most prominent, were 
included to investigate the performance of AE correction; 2) the built-in cloud masks of the 
level-1 MSI and OLI products were used to remove cloud-covered in situ measurements; and 3) 
the maximum allowed time difference between an in situ measurement and a satellite overpass 
was six hours. The number of matchups decreases with distance from shore (Fig. S5.1); analysis 
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of samples collected beyond 200 m from shore, up to 5 km, is included in Supplementary 
material 5 and summarized in Section 2.4.3. Although some studies have recommended three-
hour time windows for matchups (Bailey and Werdell, 2006; Müller et al., 2015), there were 
approximately twice as many matchups in the three-to-six-hour range as there were within the 
zero-to-three-hour range. Some studies suggested time windows as long as 24 h (Warren et al., 
2019) and 30 h (Pahlevan et al., 2021) could work for nearshore waters under stable hydrologic 
and atmospheric conditions. To balance sample size and temporal proximity, a six-hour time 
window was used for the evaluation of the tool for both sensors. 
 
A total of 212 in situ measurements concurrent with 40 Sentinel-2 and 30 Landsat 8 overpasses 
were identified from across the globe (Fig. 2.3). Not all of them resulted in valid matchups 
because AC processors mask out pixels with processing errors in the output, sometimes 
differently across bands, leading to <212 valid matchups for each processor (Table 2.2). Detailed 
information on the sample size by band is included in Tables S3.1 and S3.2.  
 

 
Fig. 2.3. Geographical distribution of 212 matchups from the GLORIA dataset within 200 m of shorelines and 
with Sentinel-2 or Landsat 8 overpasses. 
 
Table 2.2. Sample size of matchups with and without adjacency-effect correction by atmospheric correction 
processor. Visible refers to bands centered between 443 and 664 nm; near-infrared (NIR) refers to bands 
centered between 705 and 865 nm. Hyphen denotes value ranges. 

 ACOLITE POLYMER l2gen 
Visible, without 122 177 88-94 
Visible, with 125 177 84-87 
NIR, without 78-110 120-157 27-44 
NIR, with 81-113 120-157 27-44 

 
All the 212 hyperspectral in situ 𝑅*$ measurements cover the 400-800 nm range, with 147 
covering the 400-900 nm range. 15 of the 212 measurements were coincident with both OLI and 
MSI measurements. These data were convolved to match the multispectral bands of the three 
sensors (S2A MSI, S2B MSI, and Landsat 8 OLI) using the spectral response functions provided 
by their respective space agencies (ESA, 2023; Barsi et al., 2014). The distribution of distances 
from matchups to shore is presented in Fig. 2.4. On average, the Sentinel-2 matchups were closer 
to shore than the Landsat 8 matchups. 
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Fig. 2.4. Number of in situ measurements coinciding with Sentinel-2 and Landsat 8 overpasses as a function of 
distance to shore. 
 

2.2.3.2 Atmospheric correction 
 
Three state-of-the-art AC processors, ACOLITE, POLYMER, and l2gen, were selected to 
explore the impact of AE correction on derived 𝜌0.  
 
ACOLITE is a generic processor developed at the Royal Belgian Institute of Natural Sciences 
(Vanhellemont and Ruddick, 2018; Vanhellemont, 2019a), and it has shown good performance 
for coastal and inland water applications (Pahlevan et al., 2021). By default, ACOLITE performs 
the AC using the dark spectrum fitting technique, which automatically selects the band with 
lowest Rayleigh-corrected reflectance values to estimate AOT. Look-up tables were constructed 
using 6S (Vermote et al., 2006) for various observation geometry and atmospheric conditions, 
and atmospheric contribution interpolated from the look-up tables is removed from the TOA 
reflectance to derive surface-reflectance values.  
 
POLYMER was developed at HYGEOS, France. It fits a second-order polynomial function to 
Rayleigh-corrected reflectance to correct for aerosol and sunglint signals simultaneously 
(Steinmetz et al., 2011). POLYMER first removes Rayleigh contribution from the TOA 
reflectance; then it combines a water reflectance model and an atmospheric reflectance model to 
fit the Rayleigh-corrected reflectance. The water reflectance model has two parameters, Chl-a 
and particle backscattering coefficient, and the atmospheric reflectance model includes aerosol 
and glint contributions. POLYMER optimizes five spectral-optimization parameters to best fit 
Rayleigh-corrected reflectance with modeled values. The final 𝜌0 is derived by subtracting the 
fitted atmospheric model from the input spectrum, making the derived 𝜌0 not limited to the 
modeled water parameters. POLYMER has demonstrated successful retrieval of ocean color 
information from MERIS data in the presence of intense sunglint (Steinmetz and Ramon, 2018). 
The relatively smooth spectral shapes of aerosol and glint confer an advantage when correcting 
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for both simultaneously, as this approach proves effective in minimizing errors that may arise 
from addressing each component individually. 
 
l2gen, developed and maintained by NASA’s Ocean Biology Processing Group, is the L1-to-L2 
processing module in SeaDAS (Gordon and Wang, 1994). It is capable of performing AC and 
retrieving ocean color products for multiple sensors. l2gen uses a NIR and a SWIR band for 
aerosol estimation by assuming negligible water-leaving radiance in the two bands, attributing 
TOA reflectance to aerosols only to characterize them and extrapolate aerosol information to 
other wavelengths. Initially designed for open-ocean applications, l2gen has undergone 
significant improvements to characterize aerosols in various atmospheric and water-property 
conditions (Ahmad et al., 2010; Bailey et al., 2010; Lavender et al., 2005). These improvements 
enabled l2gen to derive reflectance of moderately turbid coastal waters (Jamet et al., 2011). 
 
All MSI and OLI imagery was processed to 𝜌0 with the default setting in each processor to 
ensure the analysis stays accessible and relevant to the broader user community while avoding 
the need to test multiple configurations, with the following modifications:  

• ACOLITE (version: 20231023.0): glint removal was enabled, the negative-𝜌0 filter was 
disabled to capture low reflectance with sensor noise, and NASA atmospheric ancillary 
data was enabled (OBPG, 2023);  

• POLYMER (version: 4.16.1): ECMWF’s ERA-interim atmospheric ancillary data (Dee et 
al., 2011) was used, because only a test version of POLYMER (4.17 beta) supports the 
recent update of NASA atmospheric ancillary data (OBPG, 2023) at the time of writing; 

• l2gen (version: SeaDAS 8.4.1): NASA atmospheric ancillary data (OBPG, 2023) was 
used.  

 
The three algorithms work with sunglint in different ways. The polynomial fitting technique in 
POLYMER deals with glint internally; l2gen has a glint-correction method based on sea-surface 
wave-slope statistics as a function of wind speed (Wang and Bailey, 2001), and ACOLITE 
extrapolates estimated glint reflectance from the SWIR range to NIR and visible wavelengths 
(Harmel et al., 2018). 
 
ACOLITE and POLYMER use tiled processing: images are divided into tiles before performing 
AC in order to account for the spatial variation of aerosol properties, observation geometry, and 
other environmental factors. l2gen follows a pixel-based processing approach where each pixel is 
treated independently from neighboring pixels. 
 
To compare with the in situ measurements, 𝜌0 was extracted from within 90 m × 90 m or 100 m 
× 100 m boxes surrounding the matchup location, depending on the resolution of the raw 
imagery and the AC-processor output. The median value of water pixels in the selected box for 
each band was used in the comparison with in situ values to remove outliers (Müller et al., 2015). 
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2.2.3.3 Performance metrics 
 
We evaluated processor performance following Pahlevan et al. (2021). Two metrics were used to 
investigate the overall error and bias in satellite-derived water-leaving reflectance, 𝜌�0, by 
comparing it with field-measured 𝜌0. The symmetric signed percentage bias (𝛽) is calculated as  
 
 𝛽 = sign(𝑍) ∙ (10� − 1) ∙ 100% (2.22) 

 
where 𝑍 is the median of log_K(𝜌�0/𝜌0); and the median symmetric accuracy (𝜀) is calculated as  
 
 𝜀 = (10q − 1) ∙ 100% (2.23) 

 
where 𝑌 is the median of |log_K(𝜌�0/𝜌0)|. The two metrics convert all paired ratios into 
logarithmic space before transforming them back to linear space, and they utilize median values 
and penalize errors in logarithmic space; they are shown to be robust to outliers and easily 
interpretable as percentages (Morley et al., 2018). In addition, we calculated root mean squared 
error (RMSE), which is a more conventional performance metric, 
 

 RMSE = 	�7(𝜌�0 − 𝜌0)`/𝑁
]

G^_

. (2.24) 

 
When calculating 𝛽 and 𝜀, negative reflectance values cannot be log-transformed and are 
therefore discarded in the original calculations. This becomes problematic for evaluating 
retrieved values that are extremely low, such as the NIR reflectance of water. For example, when 
𝜌0 is ~0 and a processor successfully retrieves 𝜌�0 centered around 0, with slight sensor and 
atmospheric noise, the results are biased towards overestimation if negative values are excluded. 
Negative retrievals were common for all three AC processors in this study (Supplementary 
material 4). To mitigate this, for each band with and without AE correction, the absolute value of 
the lowest reflectance at this wavelength, either satellite-derived or in situ, was added to all 
satellite-derived and in situ values (Fig. 2.5). Another 0.001 was then added to the values to force 
them to be positive. For each band processed by each AC processor, values with and without AE 
correction were incremented by the same number to ensure an unbiased comparison. If all values 
were positive for a band, no change was made. 
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Fig. 2.5. Example of shifting values to include negative values in the calculation of 𝛽 and 𝜀. When at least one 
negative value is present, all values on both axes are shifted by adding the absolute value of the lowest value 
plus 0.001. Most of the original points in this example have negative values in at least one axis and, without 
such shifting, would therefore have to be removed prior to the log transformation when calculating 𝛽 and 𝜀. 
 
The amount of improvement on all three performance metrics from AE correction was quantified 
as percentage change after correction, calculated as 
 

 
|𝑉0)#BF.#| − |𝑉0)#B|

|𝑉0)#BF.#|
∙ 100% (2.25) 

 
where 𝑉0)#B and 𝑉0)#BF.# are the values of the performance metrics with and without AE 
correction, respectively. Following Pahlevan et al. (2021), the five wavelengths shared by 
Sentinel-2 MSI and Landsat OLI were combined in the analysis to enhance the statistical 
significance. Note that the three performance metrics quantify error, and a reduction in their 
value indicates an improvement in AC performance. 
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2.3 Results 
 
2.3.1 Performance overview  
 
Satellite-derived water-leaving reflectance, derived with and without AE correction, was 
compared with in situ measurements. Following AE correction, the 78 values of performance 
metrics, for three AC processors and nine bands, were all improved except for three values for 
POLYMER (Fig. 2.6 and Table 2.3). On average, there was a 16.7 % reduction in RMSE, 
32.4 % reduction in 𝛽, and 36.8 % reduction in 𝜀 across the three AC processors.  
 
The change in performance varies across the processors:  

• For ACOLITE, there was a >30 % reduction in all three metrics at 740, 780, 833, and 865 
nm; 𝛽 on average had a 64.1 % reduction across all nine bands, although it was only 
0.3 % for the 705 nm band; RMSE and 𝜀 in the remaining bands, centered between 443 
and 705 nm, experienced minor improvements (Fig. 2.6 and Table 2.3).  

• For POLYMER, there was on average a 41.6 % reduction in 𝛽 and 𝜀 at 664nm, 705 nm, 
780 nm, and 865 nm. The performance was poor for β at 443 and 740 nm and RMSE at 
865 nm, with 318 %, 40.5 %, and 14.2 % increases, respectively; the two increases larger 
than 30 % happened where the two 𝛽 values were both low, changing from 4.1 % to -
17.3 % for the 443 nm band and 1.9 % to -2.6 % for the 740 nm band following AE 
correction. There were minor improvements in the remaining bands and metrics (Fig. 2.6 
and Table 2.3).  

• For l2gen, the bands centered between 443 and 740 nm had on average a 58.8 % 
reduction in 𝛽 and 𝜀; improvement in RMSE was moderate, ranging from 19.4 % to 29 % 
in the five bands from 443 and 705 nm; AE correction had almost no impact on the 833 
nm band (Fig. 2.6 and Table 2.3). The 865 nm band was missing for l2gen because l2gen 
assumes all reflectance at this wavelength comes from aerosols, i.e. 𝜌0 = 0, in order to 
estimate AOTs. 

 
Details about changes in the three metrics, reported by sensor and band, are included in 
Supplementary material 3. 
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Fig. 2.6. Performance metrics with and without adjacency-effect correction, grouped by atmospheric 
correction processor and band wavelength. Bands at 705, 740, 783, and 835 nm are exclusive to Sentinel-2 
MSI matchups, and the other bands are shared by Landsat 8 OLI and Sentinel-2 MSI.  
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Table 2.3. Percentage reduction of performance metrics with the implementation of adjacency-effect 
correction, grouped by atmospheric correction processor. Positive and negative values indicate improved and 
reduced performance, respectively (Eq. (2.25)). All values are in units of % change; values greater than 30 % 
are in bold. 

 ACOLITE  POLYMER  l2gen 

 RMSE β ε  RMSE β ε  RMSE β ε 
443 nm 7.0 78.1 14.3  19.5 -318.0 20.9  29.0 72.3 67.7 
490 nm 8.6 70.2 26.4  19.3 9.2 22.3  28.9 73.2 68.6 
560 nm 7.1 39.9 21.0  10.7 23.7 26.7  16.7 62.7 56.5 
664 nm 6.5 35.9 17.9  10.7 53.3 50.2  19.4 62.6 52.3 
705 nm 4.9 0.3 8.2  14.0 42.3 42.2  24.5 56.8 56.8 
740 nm 38.8 99.1 68.7  11.7 -40.5 11.6  5.9 38.3 38.3 
780 nm 49.3 75.6 68.6  8.4 35.0 24.8  2.6 22.3 22.3 
833 nm 67.9 92.0 65.0  2.6 21.6 21.6  0.5 0.0 0.0 
865 nm 32.9 87.2 48.4  -14.2 49.4 35.8     

 
2.3.2 Scatterplot comparison and additional results 
 
Most bands from all three AC processors experienced minor to major improvements following 
AE correction, with points located closer to the 1:1 line when AE correction was implemented 
(Fig. 2.7). Certain bands experienced visually significant improvements, such as the four bands 
centered between 740 and 865 nm for ACOLITE, bands at 490, 664, 705, 740, and 865 nm for 
POLYMER, and the six bands centered between 443 and 740 nm for l2gen (Fig. 2.7). Changes in 
the remaining bands are less visually discernible. The retrieved MERRA2 AOT550 for most of 
the images was under 0.2, with a similar distribution for MSI and OLI matchups (Fig. 2.8).  
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Fig. 2.7. Satellite-derived water-leaving reflectance, with and without adjacency-effect correction, compared 
with in situ values. Plots are grouped by atmospheric correction processor and band wavelength. Points are 
colored by satellite sensor. Blue dashed lines represent least-squares linear regression. Red crosses are located 
at (0,0) for visual reference. The 865 nm band is missing for l2gen as the processor assumes water-leaving 
reflectance at 865 nm is zero to estimate aerosol optical thickness. *: The AE correction results in a reduction 
of 30 % or more for at least one performance metric; **: The AE correction results in a reduction of 30 % or 
more for all three performance metrics.  
 

 
Fig. 2.8. Distribution of retrieved aerosol optical thickness at 550 nm. One value was retrieved for each image. 
 
In some cases, changes in TOA reflectance can lead to changes in the number of negative 
retrievals by AC processors. For ACOLITE, around 10 % of reflectance values at NIR 
wavelengths changed from positive to negative with AE correction, with slightly decreased 
number of negative retrievals in the visible range; for l2gen, there was on average 18 % fewer 
negative retrievals across all bands and AC processors with AE correction; and for POLYMER, 
the number of negative retrievals stayed roughly the same with and without AE correction (Fig. 
2.7 and Supplementary material 4). 
 
2.3.3 Example matchups 
 
Examples of the impact of AE correction on TOA reflectance and derived water-leaving 
reflectance at various distances from shore are shown in Fig. 2.9.  Maps of TOA reflectance at 
865 nm were included in Fig. 9 to illustrate the spatial variation of AE correction as the NIR 
band is often most affected by the AE (Sterckx et al., 2011); this is supported by correction at 
this wavelength being the largest in small waterbodies near vegetation (Fig. 2.9a, b, and e). From 
observing the changes in spectra following AE correction, AE correction of the TOA reflectance 
tends to 1) increase underestimated l2gen-derived 𝜌0 in the visible range (Fig. 2.9c, d, and e), 
with shorter wavelengths experiencing a greater increase; 2) reduce ACOLITE-derived 𝜌0 in the 
NIR range, with a small increase in the visible range (Fig. 2.9a, b, and e); and 3) for POLYMER, 
the changes seem to occur throughout the visible-NIR range, with visible wavelengths 
experiencing somewhat greater changes (Fig. 2.9a, b, and d).   
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Fig. 2.9. Examples of the impact of adjacency-effect correction on TOA reflectance and water-leaving 
reflectance derived by three atmospheric correction processors. From left to right: RGB view of the image, 
TOA reflectance at 865 nm with and without adjacency-effect correction, and TOA, in situ, and derived water-
leaving reflectance grouped by processor without and with correction. Stars on the maps represent the 
locations of the matchup spectra displayed on the right. Distance to shore is indicated on the left of the images. 
Scene IDs and aerosol optical thickness are listed in Table 2.4.  
 
Distance to shore and AOT are two important factors in AE correction (Vermote et al., 1997a). 
In general, water pixels far from land experienced less correction (Fig. 2.9c and e). Fig. 2.9d 
shows an example of increased AE correction, at a similar distance to shore as Fig. 2.9c and e, 
due to a relatively large AOT550 of 0.266 (Table 2.4). Water pixels can be masked in the AE 
correction due to high aerosol loading (Fig. 2.9d).  
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Table 2.4. Scene IDs and AOT550 used in adjacency-effect correction for the examples shown in Fig. 2.9. 
  Scene ID AOT550 
a S2A_MSIL1C_20170830T093031_N0205_R136_T35VMD_20170830T093331 0.097 
b LC08_L1TP_186019_20150612_20200909_02_T1 0.068 
c S2A_MSIL1C_20190613T101031_N0207_R022_T32TQN_20190613T121346 0.071 
d S2A_MSIL1C_20210707T155911_N0301_R097_T17SNV_20210707T200456 0.266 
e LC08_L1TP_224077_20160405_20200907_02_T1 0.124 

 
2.4 Discussion 
 
2.4.1 Improvement across AC processors 
 
Improvements in derived 𝜌0 varied across AC processors, reflecting their distinct algorithms and 
sensitivities to the AE. Here, we interpret the improvements for each AC processor individually, 
without attempting to compare results across processors, as each was developed for distinct 
applications. For ACOLITE, there was a notable improvement in the red-edge and NIR 
wavelengths (Table 2.3). ACOLITE does not assume a specific spectral shape for water; instead, 
it simply subtracts atmospheric contributions from TOA reflectance (Vanhellemont and Ruddick, 
2018). Consequently, a lowered NIR TOA reflectance from AE correction leads to a reduced 𝜌0 
in the NIR bands (Fig. 2.9). Less improvement was seen in the visible bands, which were already 
relatively well-retrieved; this was likely because ACOLITE’s Dark Spectrum Fitting technique 
tends to select visible bands, where the AE is less significant, for AOT estimation. 
 
In contrast, POLYMER showed improvement across the entire spectrum (Fig. 2.6 and Fig. 2.9), 
likely due to its polynomial fitting approach. POLYMER was designed for coastal and open 
ocean environments where the AE is less significant (Steinmetz et al., 2011). Although 
POLYMER does not restrain the water reflectance in its output spectra, the NIR contribution 
from the AE is likely erroneously attributed to either the aerosol-and-glint model or particle 
backscattering in the water reflectance model during the spectral optimization process. This 
misattribution could lead to errors that propagate to other wavelengths through the polynomial 
fitting process; reducing the AE and such misattribution could therefore enhance the 
optimization process in POLYMER and improve its performance. 
 
For l2gen, a pronounced improvement was observed in the visible range. While the AE 
correction generally led to greater changes in the NIR range for TOA reflectance, the retrieved 
𝜌0 with AE correction was more notably improved in the visible range (Fig. 2.9), likely from 
enhanced characterization of aerosols from NIR bands and subsequent extrapolation towards 
visible wavelengths (Bulgarelli et al., 2017). This improvement was also reflected by the average 
18 % less negative retrievals across all bands (Fig. 2.7). This finding is similar to those of Wang 
and Jiang (2018), who addressed absorbing aerosols by mitigating the negative reflectances 
retrieved by l2gen. Despite their different mechanisms, both the AE and absorbing aerosols can 
lead to negative 𝜌0 retrieved by l2gen, suggesting potential benefits from investigating and 
integrating their correction methods. 
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The use of the turbid water correction option in l2gen (Bailey et al., 2010) was not enabled in 
this exercise with matchups from diverse environments. This option, which estimates non-
negligible 𝑅*$ in NIR bands based on Chl-a concentration, is not activated by default and 
requires extra settings that may not be familiar to general users. The turbid water correction can 
potentially compensate for the AE in the NIR bands: overestimates of NIR reflectance can 
compensate for the AE, when the two have similar values, balancing the retrieved values to the 
correct level (Bulgarelli et al., 2018). The combined use of such option and AE correction should 
be investigated further. 
 
2.4.2 Benchmark with another method 
 
Comparing the described AE correction approach with others is challenging due to the lack of 
open-source software that corrects for the AE at the TOA level, a step necessary for any 
processing to be followed by AC processors. Alternatively, the Vermote et al. (1997a) approach 
corrects for the AE at the surface level following atmospheric correction. This approach is the 
only publicly available AE correction method that the authors are aware of, other than T-Mart, 
that can complement existing AC methods; it was therefore used for comparison. 
 
The Vermote et al. (1997a) approach requires surface reflectance of both land and water pixels to 
perform AE correction. Consequently, we applied this approach only to ACOLITE output 
because the other two AC processors do not derive land surface reflectance. Detailed 
methodology is included in Supplementary material 6. The 78-122 matchups from ACOLITE 
output without AE correction (Section 2.2.3.1) were treated with this AE correction. The impact 
of the Vermote et al. (1997a) correction was significant in the red edge and NIR bands and 
minimal in the visible range; on average, there was a 16.4 % reduction in RMSE, a 6.3 % 
reduction in 𝛽, and an 18.0 % reduction in 𝜀 (Supplementary material 6). In comparison, the T-
Mart approach achieved greater improvement across all three metrics and all bands except 𝜀 at 
865 nm. The greater improvement is likely due to more accurately characterized PSF and fewer 
assumptions about surface reflectances. The code to perform AE correction following the 
Vermote et al. (1997a) approach is also made publicly available, with details in Supplementary 
material 6. It should be noted that since that approach does not require the characterization of the 
PSF through Monte Carlo simulations, the code performs AE correction within seconds and 
could be considered a faster but less accurate alternative to T-Mart for applications that rely on 
NIR bands. 
 
2.4.3 Variability of correction results with distance 
 
The improvements in RMSE at 200 m distance-to-shore intervals (i.e., 0-200 m, 200-400 m, etc.) 
up to 5 km are shown in Fig. 2.10, and those for 𝛽 and 𝜀 are presented in Supplementary material 
5 for brevity, as they share a similar trend. 
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Fig. 2.10. Improvement in RMSE following AE correction for matchups at 200 m distance intervals from 
shore. The numbers at the top represent the combined sample size from three AC processors for both OLI and 
MSI products. Each box plot aggregates values for each band (n=26) from the three AC processors, weighted 
by the number of matchups. Positive and negative values indicate reduced and increased RMSE, respectively.  
 
As expected, the most significant improvement in performance metrics was observed in the 0-
200 m range where the AE is strongest; and the improvement decreases with distance, roughly 
centering at zero at a distance of 3000 m from shorelines (Fig. 2.10 and Fig. S5.4). Each AC 
processor experiences similar improvements across the bands for matchups in the 200-1000 m 
range as those in the 0-200 m range, although with a lower magnitude. The sample size decreases 
with distance; intervals beyond the 1200 m range each has a sample size smaller than 100, 
requiring cautious interpretation of the results. 
 
The 3000 m estimate is shorter than the 36-kilometer range where the AE can be detected by 
ocean color sensors, modeled and reported by Bulgarelli and Zibordi (2018). Our finding is 
limited by noise from small sample sizes and instrument inaccuracies. More field data collection, 
supported by modeling, is likely needed to determine a more accurate distance to shore beyond 
which AE correction is no longer beneficial. 
 
2.4.4 Implications 
 
Accurate retrieval of water-leaving reflectance is fundamental in optical aquatic remote sensing 
and is crucial for achieving high accuracy in derived products in freshwater and coastal 
environments (Pahlevan et al., 2021). In this context, algorithms that utilize red-edge-to-NIR 
bands for estimating aquatic products, such as TSS (Balasubramanian et al., 2020; Nechad et al., 
2010) and Chl-a (Gilerson et al., 2010; Gons, 2005; Moses et al., 2012), can significantly benefit 
from incorporating the described AE correction when used with ACOLITE, since retrieval of 𝜌0 
in these bands has shown substantial improvements in the matchup exercise (Fig. 2.6 and Table 
2.3). 
 
Considering the complexities in measuring in situ reflectance in NIR bands (Groetsch et al., 
2017; Ruddick et al., 2019), downstream products improved through AE correction in visible 
wavelengths could also be crucial to operational monitoring. For instance, improved red-band 
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retrieval in Pléiades products has enhanced water turbidity mapping (Vanhellemont and Ruddick, 
2018), better retrieval in the coastal blue and blue bands of Landsat 8 OLI products has increased 
the accuracy of satellite-derived bathymetry (Ilori and Knudby, 2020), enhanced retrieval of 
visible wavelengths, especially in the blue spectrum, has improved Chl-a and diffuse attenuation 
coefficient at 490 nm in VIIRS products (Wang and Jiang, 2018), and accurate spectra of water-
leaving reflectance are needed for retrieving seafloor reflectance and identifying habitat types 
(Hedley et al., 2018; Knudby and Nordlund, 2011; Wilson et al., 2020). 
 
At short distances from coastlines, both in situ and satellite-derived reflectances may contain 
contributions from the water bottom of shallow areas. In addition, satellite-derived reflectance 
may include sub-pixel contamination of non-water objects. Depending on the processing setting 
and non-water-masking criteria (Section 2.2.1.2), the AE correction process could include 
shallow-water and mixed pixels in the output, corrected for the AE assuming Lambertian 
properties for all contributions (water column, water bottom, and non-water objects). ACOLITE 
and POLYMER use tiled processing, which utilizes neighbouring pixels to estimate atmospheric 
contributions, enabling them to retrieve the reflectance of these pixels. Bottom contribution 
could lead to failure of bio-optical algorithms designed for deep waters (Richardson et al., 2024); 
however, shallow-water pixels, especially following AE correction, can be used as input for 
satellite-derived bathymetry, bottom habitat mapping, and bio-optical algorithms tailored for 
shallow waters, such as the Hyperspectral Optimization Processing Exemplar model (Lee et al., 
1998, 1999).  
 
The T-Mart code as an AE correction tool offers several advantages over existing tools: 1) it 
characterizes multiple scattering using full 3D Monte-Carlo simulations; 2) it is versatile, making 
no assumptions about the spectral shape of the water, whether it is optically deep or shallow and  
ranging from clear to moderately turbid; 3) it is open-source with a publicly shared methodology; 
4) it was designed for the new generation of decameter-resolution sensors, including Sentinel-2 
MSI and Landsat 8/9 OLI, capable of monitoring small inland waterbodies where the AE is most 
prominent; 5) as a physics-based and sensor-generic tool, it does not require specific band 
combinations; and 6) it takes into account sensor characteristics and observation environments, 
performs AE correction at the TOA level, can be followed by any AC processor, and has been 
validated against in situ data collected from diverse environments. 
 
2.4.5 Outlook 
 
The current code assumes flat and Lambertian land-and-water surfaces and a vertically stratified 
but horizontally homogeneous atmosphere; these assumptions justify the use of a uniform PSF 
across a satellite scene. Testing or removing such assumptions is challenging: calculating a PSF 
for each pixel individually and performing spatially variant convolution across the scene is 
currently computationally impractical with a personal computer. Additionally, the resolution of 
the ancillary MERRA2 data, which is 0.5° latitude by 0.625° longitude, restricts the potential to 
study the impact of the heterogeneity of atmospheric gasses and aerosols. Future work could 
consider topographic effects, the bidirectional reflectance distribution functions of land and 
water, and the spatial heterogeneity of atmospheric molecules and aerosols within a scene, given 
improved ancillary and validation data sources and greater computational power. 
 



Chapter 2: Adjacency effect correction 

 63 

The scale height for aerosol particles in T-Mart is 2 km, following the 6S model (Vermote et al., 
2006); while the code supports different vertical distributions of aerosols, such input data is rare 
(Watson-Parris et al., 2019). Improved characterization of aerosols from space-borne lidar 
sensors and the two polarimeters on PACE (Jamet et al., 2019), as well as synchronous polarized 
multispectral measurements (Xu et al., 2022), could therefore further improve the performance 
of the AE correction tool. 
 
The magnitude and extent of the AE heavily depend on AOT, which is derived from the 
MERRA2 dataset in the provided tool. A sensitivity analysis was conducted to examine the 
impact of varying AOT values from the MERRA2 dataset on the correction results 
(Supplementary material 7). A range of AOT offset values within the RMSE of MERRA2 
AOT550 (0.126) was used. The analysis included the ten scenes with the highest numbers of 
matchups within 200 m, totaling 76 in situ measurements. Results from the non-zero AOT550 
offsets were compared with those using the default MERRA2 values. The findings indicate that 
POLYMER benefits from slight AOT overestimates in AE correction, while ACOLITE benefits 
from a wide range of AOT overestimates potentially at the cost of deviating spectral shapes. 
l2gen works best with default AOT values, although with occasional improvements from 
overestimated AOT values. Overall, the use of ancillary AOT values does not appear to be a 
significant concern for the dataset used in this study. 
 
The described algorithm is physics-based, and it inherently considers the spectral difference 
between the target and scattering sources; however, improvement from AE correction is likely to 
vary across different target-and-scattering-source combinations for each AC processor. For 
example, POLYMER demonstrated resistance to the AE from snow and ice, as the spectrally 
smooth impact of AE can be mitigated during the polynomial fitting process (Steinmetz and 
Ramon, 2018). The performance of AE correction for various land-cover, water-type, and AC-
processor combinations can be further assessed following approaches in König et al. (2019), Pan 
et al. (2022), and Bulgarelli and Zibordi (2018). 
 
Future work should address the AE originating from clouds, especially considering the 
challenges in estimating their altitude. The interaction between the relative altitude of clouds and 
aerosols in the atmospheric column makes this a fundamentally three-dimensional problem. 
While T-Mart supports modeling surfaces with non-flat topography, it assumes parallel 
atmospheric layers. The 3D version of the MYSTIC solver in libRadtran (Mayer, 2009), which 
allows for 3D optical properties of clouds, may provide the necessary capabilities for simulating 
such interactions. 
 
Although a sample size of 212 has provided encouraging evidence of the tool’s performance, 
expanding the size of nearshore matchup datasets with initiatives like the Remote sensing 
Adjacency Correction project (RAdCor, 2024) will enhance the assessment of tool performance. 
It is also essential to evaluate how these advancements affect downstream products, such as 
satellite-derived concentrations of Chl-a and TSS, and how they contribute to meeting 
monitoring and operational requirements.  
 
The emergence of high-resolution imagery has led to development of applications for smaller 
waterbodies such as lakes, rivers, and estuaries (Pahlevan et al., 2021) where the AE is 
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significant, highlighting the importance of a sensor-generic AE correction tool. There have been 
successes in sub-meter AE correction for panchromatic bands (Wang et al., 2021a, 2021b). T-
Mart focuses on the narrower-band sensors and supports data from Landsat 9 OLI-2 and 
PRISMA; its performance for these sensors has not yet been assessed due to the limited number 
of matchups with publicly available in situ measurements. Future development will prioritize 
high-resolution sensors such as WorldView, PlanetScope, and SkySat. Although the performance 
of T-Mart AE correction has only been assessed on Landsat 8 OLI and Sentinel-2 MSI products, 
similar performance is expected for imagery from other sensors as the algorithm does not make 
assumptions about sensor characteristics. It should be noted that since a large 36 × 36 km PSF is 
used to characterize the source of diffuse radiance in the AE correction, the correction results for 
narrow-swath imagery (i.e., 30 km swath width for PRISMA and EnMAP products) will 
inevitably be compromised due to missing information from neighbouring areas. In such cases, 
filling the reflectance outside the scenes with seasonal averages or modeled products may 
improve the performance of AE correction.  
 
2.5 Conclusion  
 
We introduced an approximate solution to a closed-form expression that corrects for the AE at 
the TOA level (Eq. (2.1)). This solution is implemented in a Python tool that computes the 
atmospheric PSF, convolves the observed reflectance, and calculates the difference between the 
convolved and observed reflectance. Lastly, the tool removes the product of the difference and a 
scaling factor from the TOA reflectance and corrects for variations in ground-level irradiance 
due to surface heterogeneity. The output is adjacency-effect-free TOA reflectance that can be 
further processed by any AC processor. Following the described AE correction, we demonstrated 
substantial improvements in the retrieval of water-leaving reflectance in the context of aquatic 
remote sensing of coastal and freshwater environments. For matchups within 200 m of shorelines 
(n = 212), applying AE correction resulted in an average 16.7 % reduction in RMSE, 32.4 % in 
𝛽, and 36.8 % in 𝜀 across all MSI and OLI bands processed by three state-of-the-art AC 
processors (Table 2.3). 75 of the 78 performance metric values spanning all processors and bands 
improved as a result of AE correction. The few negative changes, all observed with POLYMER, 
were likely due to noise resulting from a relatively small matchup sample size and the 
processor’s approach of optimizing spectral fitting between modeled and at-sensor reflectances. 
The extent of these improvements varied across processors. ACOLITE showed more significant 
enhancements in the NIR wavelengths, while l2gen exhibited greater improvements in the visible 
range and less change in longer wavelengths. For POLYMER, the improvements were evenly 
distributed across the visible-NIR spectrum. The improved retrieval of water-leaving reflectance 
from AE correction is expected to enhance the quality of derived downstream products for 
coastal and freshwater environments. It is therefore recommended that the provided AE 
correction tool be implemented when conducting aquatic remote sensing studies in such 
environments. 
 
Installation and Use of the Tool  
 
T-Mart is written in Python. The code, installation instructions, and a quick-start menu are 
available from https://github.com/yulunwu8/tmart. Detailed processing options can be found at 
https://tmart-rtm.github.io. The tool takes approximately 20 minutes to process a Landsat 8/9 

https://github.com/yulunwu8/tmart
https://tmart-rtm.github.io/
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scene and 30 minutes for a Sentinel-2 scene on an eight-core personal computer. Ancillary 
atmospheric and aerosol data are automatically downloaded in the AE correction process given 
NASA EarthData Credentials. 
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2.6 Supplementary materials 
 
Supplementary material 1: Impact of simplifying the calculation of 𝜶 in AE correction 
 
The impact of excluding (1 − 𝑐𝑐) ∙ 𝑈_ and 𝑐𝑐 ∙ 𝑈` in the calculation of 𝛼 in AE correction (Eq. 
18) was evaluated by conducting AE correction in a modeling environment. We used ACOLITE-
output surface reflectance of two Sentinel-2 scenes as surface reflectance. The first scene was in 
Japan, featuring a complex landscape and high AOT; the second scene, a relatively smooth 
coastal area with medium-low AOT, was in New Zealand (Table S1.1). Aerosol type, AOT, and 
ozone and water vapor concentrations for the scenes were extracted from the GMAO MERRA2 
meteorological and aerosol datasets following Section 2.1.2 and Supplementary material 2. 
These were used to construct the optical properties of the atmosphere using 6S through the Py6S 
Python interface (Wilson, 2013). Direct and diffuse transmittances, atmospheric spherical 
albedo, the PSF, and the atmospheric intrinsic reflectance were then calculated in T-Mart (Wu et 
al., 2023). 𝜌$!+, was calculated following Eq. (4). Lastly, the TOA reflectance of heterogeneous 
scenes was simulated using Eq. (3) with parameters described above as inputs. In summary, 
TOA reflectance in the presence of the AE was modeled in a ‘known’ atmosphere-surface 
system. 
 
Table S1.1. Sentinel-2 scenes and AOT550 used in the simulation.  
Location Scene ID AOT550 
Japan S2A_MSIL1C_20190308T015651_N0207_R060_T52SFA_20190308T044306 0.17 
New 
Zealand S2B_MSIL1C_20191102T221609_N0208_R129_T60GTU_20191102T232453 0.09 

 
AE correction was performed following the procedure described in Section 2.1.2. Two 𝛼 values 
were used and compared: 𝛼 with full terms in Eq. (18) and simplified 𝛼 in Eq. (19), respectively. 
The differences in TOA reflectance of water pixels between correction results using different 𝛼 
values were also calculated (Fig. S1.1). Water pixels were defined as those with a surface 
reflectance at 865 nm < 0.02 to include shallow water pixels. 
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Fig. S1.1. Sentinel-2 scenes illustrating the impact of simplifying 𝛼 on the output TOA reflectance with AE 
correction in (a) southeastern Japan, and (b) eastern New Zealand, for all water pixels in the scenes. Positive 
and negative values indicate overestimated and underestimated TOA reflectance, respectively, compared to AE 
correction using full-term 𝛼.  
 
Compared to AE correction using the full-term 𝛼, excluding (1 − 𝑐𝑐) ∙ 𝑈_ and 𝑐𝑐 ∙ 𝑈` can result 
in a slight underestimation of AE-free TOA reflectance with a median bias up to 0.00017 at the 
TOA level in red-edge and NIR bands (Fig. S1.1a). This bias is significantly smaller than the 
noise level of Sentinel-2, which ranges from approximately 0.002 in visible and NIR bands to 
0.0007 in SWIR bands for the two scenes. The noise levels were calculated by 
 

𝐿*!/ ∙ 𝜋/𝐸(
SNR 	 
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where 𝐸( is the solar irradiance at TOA level, calculated using 6S with inputs of the solar angle 
and observation date, and SNR and 𝐿*!/ are the signal-to-noise ratio and reference radiance for 
each band, respectively, as specified in the Sentinel-2 User Handbook (ESA, 2015).  
 
Landsat 8 OLI has a higher SNR than Sentinel-2 MSI for most of its bands due to the lower 
spatial resolution (Pahlevan et al., 2017). Given that the amount of AE correction decreases with 
a larger pixel size, the impact of excluding (1 − 𝑐𝑐) ∙ 𝑈_ and 𝑐𝑐 ∙ 𝑈` in the calculation of 𝛼 for 
AE correction of OLI products will still be lower than the sensor’s noise level, but can 
potentially reach the noise level in the NIR band (band 5) in case of highly complex topography 
and extreme AOT conditions (e.g., AOT550 > 0.3).  
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Supplementary material 2: Interpolation of aerosol information 
 
MERRA2 provides hourly aerosol information, including AOT550, Angstrom exponent, and 
single-scattering albedo. ACOLITE, by default, uses continental and maritime aerosol models 
from 6S, automatically selecting the one with the best fit using the dark-spectrum fitting 
technique across the reflectance spectrum (Vanhellemont and Ruddick, 2018). To ensure a 
smoother transition of aerosol composition from land to water, we chose to linearly interpolate 
the aerosol composition between the two aerosol models from 6S using MERRA2's Angstrom 
exponent and single-scattering albedo. 
 
In 6S, the continental and maritime aerosol models have Angstrom exponents of 1.132 and 
0.265, and single-scattering albedos of 0.893 and 0.989, respectively (Vermote et al., 2006). The 
two parameters are retrieved for the scenes to be processed, and used to linearly interpolate the 
fraction of the two aerosol types in the mixture (e.g., a single-scattering albedo of 0.941 would 
lead to a fraction of 50 % continental and 50 % maritime aerosols). The fractions derived from 
these two parameters are averaged and then linearly interpolated in time. The calculation process 
can be found in the script anci_get_AER.py 
(https://github.com/yulunwu8/tmart/blob/main/tmart/AEC/anci_get_AER.py). 
 
The composition of mixed continental and maritime aerosols is linearly attributed to the four 
basic aerosol components in 6S: all aerosol models in 6S are constructed using dust-like, 
oceanic, water-soluble, and soot components (Vermote et al., 2006). Continental aerosols consist 
of 70 % dust-like, 29 % water-soluble, and 1 % soot components by volume; maritime aerosols 
consist of 5 % water-soluble and 95 % soot components by volume. The fraction of each aerosol 
type is used to calculate the overall fractions of the four components or the overall aerosol 
composition, which are subsequently used to calculate aerosol optical properties. The calculation 
of aerosol optical properties is detailed in the script Atmosphere.py 
(https://github.com/yulunwu8/tmart/blob/main/tmart/Atmosphere.py). 
 
References: 
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Supplementary material 3: Performance metrics 
 
Table S3.1. Performance metrics with and without adjacency-effect correction for Sentinel-2 imagery-derived 
water-leaving reflectance, grouped by atmospheric correction processor. 
 
a) ACOLITE         
  Without   With 
  RMSE β ε n   RMSE β ε n 
Band 1 0.011 -6.7 38.8 51  0.012 18.2 46.5 53 
Band 2 0.011 -23.9 40.0 51  0.011 2.5 28.4 53 
Band 3 0.016 -13.6 24.2 51  0.015 -5.3 18.9 53 
Band 4 0.017 -42.1 43.8 51  0.015 -24.6 31.8 53 
Band 5 0.015 -16.3 35.4 51  0.014 -16.3 32.5 53 
Band 6 0.010 108.2 113.1 51  0.006 0.9 35.5 53 
Band 7 0.012 160.6 160.6 51  0.006 39.2 50.4 53 
Band 8 0.013 196.5 196.5 19  0.004 15.8 68.7 21 

Band 8A 0.013 211.1 211.1 19   0.004 17.1 69.9 21 
          

b) POLYMER         
 Without   With 
 RMSE β ε n   RMSE β ε n 

Band 1 0.031 76.8 96.0 86  0.030 26.4 67.7 86 
Band 2 0.021 17.3 53.1 86  0.020 16.5 39.4 86 
Band 3 0.026 -16.1 45.1 86  0.024 -9.0 29.5 86 
Band 4 0.022 -165.4 165.4 86  0.018 -67.1 71.4 86 
Band 5 0.022 -95.3 95.3 86  0.019 -54.9 55.1 86 
Band 6 0.008 1.9 22.8 86  0.007 -2.6 20.2 86 
Band 7 0.007 26.7 41.0 86  0.006 17.4 30.8 86 
Band 8 0.011 -47.3 47.3 49  0.010 -37.0 37.0 49 

Band 8A 0.006 -81.5 81.5 49  0.006 -41.1 41.1 49 
          

c) l2gen          
 Without   With 
 RMSE β ε n   RMSE β ε n 

Band 1 0.043 -111.6 111.6 26  0.024 -22.6 22.6 29 
Band 2 0.044 -125.7 125.7 29  0.025 -22.9 22.9 30 
Band 3 0.043 -58.5 58.5 32  0.031 -16.4 16.4 32 
Band 4 0.034 -53.0 53.0 32  0.024 -19.2 19.3 32 
Band 5 0.031 -42.3 42.3 33  0.023 -18.3 18.3 33 
Band 6 0.025 -29.8 29.8 42  0.024 -18.4 18.4 42 
Band 7 0.020 -20.4 20.4 44  0.019 -15.8 15.8 44 
Band 8 0.024 -38.2 38.2 27   0.024 -38.2 38.2 27 
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Table S3.2. Same as Table S1, but for Landsat 8 matchups.  
 
a) ACOLITE         
  Without  With 
  RMSE β ε n  RMSE β ε n 
Band 1 0.021 -42.2 49.7 71  0.018 -23.8 32.9 72 
Band 2 0.021 -32.6 33.6 71  0.019 -16.8 25.5 72 
Band 3 0.030 -15.7 18.9 71  0.028 -11.6 15.0 72 
Band 4 0.024 -14.9 20.2 71  0.023 -11.1 19.4 72 
Band 5 0.006 12.6 16.5 59  0.006 -16.5 20.0 60 
          
b) POLYMER         
  Without  With 
  RMSE β ε n  RMSE β ε n 
Band 1 0.042 -64.5 69.5 91  0.029 -58.5 62.7 91 
Band 2 0.043 -33.9 40.8 91  0.032 -31.5 33.5 91 
Band 3 0.047 -29.2 30.7 91  0.041 -25.4 25.8 91 
Band 4 0.041 -41.1 46.8 91  0.038 -28.7 33.7 91 
Band 5 0.031 -5.4 20.0 71  0.037 -2.9 20.5 71 
          
c) l2gen          
  Without  With 
  RMSE β ε n  RMSE β ε n 
Band 1 0.034 -37.0 42.2 62  0.027 -13.0 18.9 55 
Band 2 0.034 -38.2 42.5 62  0.027 -14.8 21.0 55 
Band 3 0.040 -32.1 39.5 62  0.035 -14.7 22.1 55 
Band 4 0.032 -36.2 44.0 62  0.027 -13.6 24.2 55 
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Supplementary material 4: Negative reflectance values  
 
Table S4.1. Number and percentage of negative reflectance values with and without adjacency-effect 
correction for Sentinel-2 imagery-derived water-leaving reflectance, grouped by atmospheric correction 
processor. 
 
a) ACOLITE       
  Without  With 
  n (neg.) % (neg.) n  n (neg.) % (neg.) n 
Band 1 2 3.9 51  1 1.9 53 
Band 2 2 3.9 51  0 0 53 
Band 3 0 0 51  0 0 53 
Band 4 1 2.0 51  0 0 53 
Band 5 0 0 51  1 1.9 53 
Band 6 0 0 51  2 3.8 53 
Band 7 0 0 51  1 1.9 53 
Band 8 0 0 19  3 14.3 21 
Band 8A 0 0 19  4 19.0 21 
        
b) POLYMER       
  Without  With 
  n (neg.) % (neg.) n  n (neg.) % (neg.) n 
Band 1 0 0 86  0 0 86 
Band 2 0 0 86  0 0 86 
Band 3 0 0 86  0 0 86 
Band 4 3 3.5 86  0 0 86 
Band 5 40 46.5 86  31 36.0 86 
Band 6 1 1.2 86  5 5.8 86 
Band 7 0 0 86  1 1.2 86 
Band 8 45 91.8 49  37 75.5 49 
Band 8A 46 93.9 49  39 79.6 49 
        
c) l2gen        
  Without  With 
  n (neg.) % (neg.) n  n (neg.) % (neg.) n 
Band 1 21 80.8 26  17 58.6 29 
Band 2 20 69.0 29  10 33.3 30 
Band 3 14 43.8 32  6 18.8 32 
Band 4 18 56.3 32  8 25.0 32 
Band 5 19 57.6 33  9 27.3 33 
Band 6 36 85.7 42  25 59.5 42 
Band 7 30 68.2 44  22 50.0 44 
Band 8 26 96.3 27  24 88.9 27 
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Table S4.2. Same as Table S1, but for Landsat 8 matchups.  
 
a) ACOLITE       
  Without  With 
  n (neg.) % (neg.) n  n (neg.) % (neg.) n 
Band 1 0 0 71  0 0 72 
Band 2 0 0 71  0 0 72 
Band 3 0 0 71  0 0 72 
Band 4 0 0 71  0 0 72 
Band 5 0 0 59  5 8.3 60 
        
b) POLYMER       
  Without  With 
  n (neg.) % (neg.) n  n (neg.) % (neg.) n 
Band 1 0 0 91  0 0 91 
Band 2 0 0 91  0 0 91 
Band 3 0 0 91  0 0 91 
Band 4 0 0 91  0 0 91 
Band 5 0 0 71  0 0 71 
        
c) l2gen        
  Without  With 
  n (neg.) % (neg.) n  n (neg.) % (neg.) n 
Band 1 16 25.8 62  3 5.5 55 
Band 2 6 9.7 62  3 5.5 55 
Band 3 3 4.8 62  2 3.6 55 
Band 4 5 8.1 62  2 3.6 55 
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Supplementary material 5: Analysis of matchups within 5 km of shores  
 
The sample size of matchups for in situ measurements from the GLORIA dataset decreases with 
increasing distance from shorelines (Fig. S5.1). For both MSI and OLI products, the number of 
matchups falls below 20 in every 200 m interval beyond 5 km. Consequently, we focused our 
analysis on matchups within 5 km of shorelines. 
 

 
Fig. S5.1. Number of in situ measurements coinciding with Sentinel-2 and Landsat 8 overpasses as a function 
of distance from shorelines.  
 
Matchups up to 5 km from shorelines were analyzed following Section 2.3, at every 200 m 
interval. A total of 981 in situ 𝑅*$ measurements were identified within a six-hour time window 
of 129 Sentinel-2 and 130 Landsat 8 overpasses (Fig. S5.2). The retrieved ancillary AOT values 
shared a similar distribution to those of the 200 m distance-to-shore dataset (Fig. S5.3 and Fig. 
8).  
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Fig. S5.2. Geographical distribution of 981 matchups from the GLORIA dataset within 5 km of shorelines and 
with Sentinel-2 or Landsat 8 overpasses. 
 

 
Fig. S5.3. Distribution of retrieved aerosol optical thickness at 550 nm. One value was retrieved for each 
image. 
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For each distance interval and each performance metric, we aggregated the improvement from 
AE correction across all bands and AC processors for brevity (Fig. S5.4). The results are 
discussed in Section 4.3.  
 

 
Fig. S5.4. Improvement in performance metrics following AE correction for matchups at 200 m distance 
intervals from shorelines. The numbers at the top represent the combined sample size from three AC 
processors for both OLI and MSI products. Each box plot aggregates values for each band (n=26) from the 
three AC processors, weighted by the number of matchups. Positive and negative values indicate improved and 
reduced performance, respectively. 
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Supplementary material 6: Comparison with Vermote et al. 1997 
 
The correction results of T-Mart were compared with those following the Vermote et al. (1997) 
approach. The Vermote et al. (1997) approach corrects for the AE using the following formula:   
 

 𝜌� =
𝜌$. ∙ 𝑇R5(𝜇,) − 〈𝜌�〉 ∙ 𝑡((𝜇,)

exp	(−𝜏/𝜇,)
 (26) 

 
where 𝜌� is the pixel reflectance at the surface level, 𝜌$. is the reflectance of an infinite 
Lambertian target, approximated by performing atmospheric correction for each pixel 
individually under the assumption that each pixel is Lambertian and surrounded by identical 
pixels. 𝑇R5(𝜇,) and 𝑡((𝜇,) are the total and diffuse upward transmittances, respectively. 𝜇, is 
the cosine of the view zenith angle, 𝜏 is the combined aerosol and molecular optical thickness, 
and 〈𝜌�〉 is the PSF-weighted average surface reflectance around a pixel. 〈𝜌�〉 is calculated as,  
 

 〈𝜌�〉 = 7 7 𝑓I𝑟(𝑖, 𝑗)K ∙ 𝜌(𝑖, 𝑗)
Y

G^IY

Y

\^IY

 (27) 

 
where 𝑟(𝑖, 𝑗) represents the distance between pixel (𝑖, 𝑗) and the target in km, 𝑓 is weight of the 
PSF at the pixel or the fraction of diffuse radiance that comes from the pixel, and 𝜌(𝑖, 𝑗) is the 
reflectance of the pixel (𝑖, 𝑗), which is unknown in practice and therefore approximated by 
𝜌$.(𝑖, 𝑗).  
 
Following Vermote et al. (1997), Vermote et al. (2006) updated the approximation of the PSF:  
 

 𝐹(𝑟) =
𝑡(R(𝜇,) ∙ 𝐹R(𝑟) + 𝑡(5(𝜇,) ∙ 𝐹5(𝑟)

𝑡(R(𝜇,) + 𝑡(5(𝜇,)
 (28) 

 
where 𝐹(𝑟) is the fraction of diffuse radiation at the sensor that originates from within the radius 
𝑟 (in km), 𝑡(R and 𝑡(5 are the fractions of the diffuse transmittance respectively for Rayleigh and 
aerosols, and the functions 𝐹R(𝑟) and 𝐹5(𝑟) are given by:  
 

 𝐹R(𝑟) = 1 − 0.930 exp(−0.08𝑟) − 0.070 exp(−1.1𝑟) 
𝐹5(𝑟) = 1 − 0.448 exp(−0.27𝑟) − 0.552 exp(−2.83𝑟) (29) 

 
where 𝑟 is distance in km. 
 
Converting 𝐹(𝑟) to 𝑓(𝑟) is challenging as 𝐹(𝑟) is the fraction of diffuse radiation within the 
radius 𝑟, while 𝑓(𝑟) is the fraction of diffuse radiation from a specific pixel at distance 𝑟 from 
the target. The conversion involves creating layers of circular bands with a width equal to half 
the sensor’s resolution, centered at the target pixel. The weight of each band is calculated by 
𝐹(𝑟 + 𝑤) − 𝐹(𝑟) where 𝑤 is the width of the band at various radii 𝑟. These weights are then 
normalized to their respective areas to determine the density of diffuse radiation within each 
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band. Finally, these densities are interpolated to fill the PSF grid, with the sensor’s resolution as 
the cell size. 
 
Martins et al. (2019) re-arranged Eq. (2.14) as follows, 
 

 𝜌� = 𝜌$. +
U.(k-)

!"C(IJ/k-)
(𝜌$. − 〈𝜌�〉). (30) 

 
This rearrangement is conceptually more straightforward and easier to implement, with the term 
to the right of the plus sign representing the correction amount. This modified equation was 
therefore used in the processing. Vermote et al. (1997, 2006) did not specify the size of the PSF. 
Following Martins et al. (2019), we used 1 km × 1km grids. The GMAO MERRA2 
Meteorological and Aerosol datasets provided aerosol type, AOT, and ozone and water vapor 
concentrations, as described in Section 2.1.2 and Supplementary material 2. These inputs were 
used in 6S to calculate 𝑡((𝜇,) and exp(−𝜏/𝜇,), via the Py6S interface (Wilson, 2013). The code 
is available at https://github.com/yulunwu8/Adjacency-effect-correction-6S.  
 
Since the Vermote et al. (1997) approach requires surface reflectance data for both land and 
water, and only ACOLITE, among the three AC processors, provides the necessary data. 
Consequently, ACOLITE outputs from Section 2.3, without AE correction, were treated with AE 
correction using the Vermote et al. (1997) approach and compared with the original outputs, 
followed by the matchup-extraction process in Section 2.3.2. Performance metrics were 
calculated following Section 2.3.3. Results are presented in Fig. S6 and discussed in Section 4.2.  
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 RMSE β ε 
443 nm 1.9 -33.2 -4.3 
490 nm 0.8 -18.8 -13.4 
560 nm 0.8 -33.5 -13.7 
664 nm -0.7 -32.2 -27.9 
705 nm -4.6 -141.7 -21.6 
740 nm 34.0 98.0 68.4 
780 nm 40.3 66.2 57.2 
833 nm 48.5 71.2 61.3 
865 nm 26.2 80.3 56.3 

    
 
Fig. S6. (left) Performance metrics of ACOLITE outputs with and without AE correction following the 
Vermote et al. (1997) approach. Bands at 705, 740, 783, and 835 nm are exclusive to Sentinel-2 MSI 
matchups, and the other bands are shared by Landsat 8 OLI and Sentinel-2 MSI. (right) Percentage reduction 
of performance metrics with the implementation of AE correction, grouped by atmospheric correction 
processor. Positive and negative values indicate improved and reduced performance, respectively (Eq. (25)). 
All values are in units of % change; values greater than 30 % are in bold. 
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Supplementary material 7: Impact of biases in ancillary AOT values 
 
The accuracy of the AE correction depends heavily on ancillary AOT values. Here, we 
investigate how potential biases in AOT values affect the results of AE correction.  
 
We selected the ten Landsat 8 and Sentinel-2 scenes with the highest number of matchups within 
200 m of shorelines from Section 2.3.1, with a total of 76 in situ measurements. Gueymard and 
Yang (2020) evaluated the global accuracy of the MERRA2 reanalysis AOT product against 15 
years of AERONET observations, estimating the RMSE of MERRA2 AOT to be 0.126. We ran 
the T-Mart AE correction nine times with various AOT550 offsets within the RMSE range to 
investigate if the retrieved reflectance by AC processors, following the AE corrections, could be 
more accurate than the default values. The AOT550 offsets used were 0.126, -0.0945, -0.063, -
0.0315, 0, 0.0315, 0.063, 0.0945, and 0.126. For each offset, we compared the change in 
performance metrics to those with an offset of 0. Results from the OLI and MSI datasets were 
combined, weighted by the number of matchups, and aggregated by AC processors (Fig. S7.1).  
 
The default values for POLYMER and l2gen outperformed most of the AOT offsets. For most 
metrics, performance decreased for processor-offset combinations deviating from the default 
AOT values. However, there were occasional improvements such as an offset of 0.0315 for 
POLYMER and 0.063 for l2gen.  
 
Surprisingly, overcorrection of the AE leads to consistent improvement in all three performance 
metrics for ACOLITE, enhancing the overall performance across the visible-NIR spectrum. High 
AE correction, following a high AOT offset, usually results in low AOT estimates in ACOLITE. 
This overcorrection seems to mitigate the underestimation of ACOLITE-derived reflectance at 
visible wavelengths (Fig. 7). Although all three metrics showed improvement, this comes at the 
potential cost of deviating spectral shapes; at high AOT offsets, the retrieved NIR reflectance by 
ACOLITE can become underestimated, despite achieving a better fit in the visible range (Fig. 
S7.2). Therefore, it is recommended to adhere to the default MERRA2 AOT550 values for all AC 
processors. 
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Fig. S7.1. Change in performance metrics of reflectance retrieval with AE correction at various AOT offsets. 
Each box plot aggregates values for each band (n=8 or 9) for each AC processor. Results for OLI and MSI 
bands were combined, weighted by the number of matchups from each dataset. Numbers at the top indicate the 
total number of matchups for both datasets. Some outliers, such as β and ε for ACOLITE at offsets of 0.0315 
and 0.063, represent the unique bands of MSI. These bands have a smaller sample size and were given less 
weight when plotting the boxes (i.e., median and interquartile range). 
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Fig. S7.2. Example ACOLITE outputs with various AOT offsets in AE correction. From left to right: 
ACOLITE only, ACOLITE with T-Mart AE correction, ACOLITE with T-Mart AE correction and an AOT 
offset of 0.126. Image scene ID: LC08_L1TP_224077_20160405_20200907_02_T1; GLORIA ID of in situ 
spectrum: GID_370. 
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Chapter 3: Accuracy and limitations of optical remote 
sensing for water quality of small rivers: a case study of two 
rivers in Eastern Ontario, Canada 
 
Abstract 
 
Optical remote sensing of water quality over small inland waterbodies is challenging due to 
factors such as the adjacency effect (AE), sub-pixel mixing, and complex water constituents. We 
evaluated the accuracy and limitations of optical remote sensing for water quality parameters in 
the South Nation River and the Ottawa River, two small rivers in Eastern Ontario, Canada. 
Satellite-derived reflectance and water quality parameters were compared with in situ 
measurements. AE correction using T-Mart reduced the sum of RMSE of ACOLITE-derived 
water-leaving reflectance by 30.4 %, achieving an RMSE of no greater than 0.0124 
(dimensionless) across MSI and OLI bands between 400 and 900 nm. The retrieved reflectance 
with AE correction had a negligible bias in the green and red bands, where water reflectance was 
high, but showed overestimations in other bands with low water reflectance. Turbidity was well 
retrieved, with an RMSE of 5 within a range of 2–72 FNU, using the 705 nm band of MSI; AE 
correction did not significantly improve satellite-derived reflectance in this band, but could be 
more important for highly turbid waters, such as when FNU > 200. AE correction improved the 
linear correlation between satellite-derived coloured dissolved organic matter (CDOM) 
absorption and in situ fluorescent dissolved organic matter (fDOM) measurements, but further 
validation is needed due to uncertainties in the fDOM-CDOM conversion. AE correction 
improved chlorophyll-a retrievals that, however, remained unsatisfactory with an RMSE of 30 
within the range of 2–88 μg/L. Simulated water reflectance using the range of in situ water 
quality measurements as input provided a basis for understanding the accuracy of these 
retrievals. Improving the retrieval of dissolved organic matter may require enhanced atmospheric 
correction in visible wavelengths. Accurate retrieval of chlorophyll-a may require hyperspectral 
sensors, with high signal-to-noise ratios, in wavelengths between 600 and 800 nm, where the 
reflectance spectra of optically complex waters are most sensitive to changes in chlorophyll-a 
concentration. 
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3.1 Introduction 
 
The South Nation River, located in Eastern Ontario, Canada, flows northeast for 175 kilometres 
from its headwaters north of Brockville, ultimately emptying into the Ottawa River near 
Plantagenet (South Nation Conservation, 2023). The Ottawa River watershed, in turn, drains into 
the St. Lawrence River and eventually the Atlantic Ocean. The South Nation River watershed 
covers approximately 4,000 km2 of mostly agricultural land, also including forests and wetlands 
(Fig. 3.1). The river has a width ranging from 100 to 180 m near its mouth, bordered mostly by 
vegetation and farmland. These characteristics, combined with the strong reflectance contrast 
between the water and adjacent land covers, make the South Nation River heavily affected by the 
adjacency effect (AE), particularly in its narrow sections. 
 
The South Nation River is subject to various pollutants, including non-point source pollutants 
like agricultural runoff, and point-source pollutants such as raw sewage outflows. Water quality 
(WQ) degradation could potentially affect multiple aspects of the watershed, lowering the quality 
of life for people living nearby, causing economic losses to businesses and industry, and 
disrupting ecological processes (Government of Canada, 2019). 
 
In this chapter, we evaluate the accuracy and limitations of aquatic remote sensing in the lower 
South Nation watershed and investigate the effectiveness of publicly available high-resolution 
satellites in monitoring WQ changes. We derive water reflectance from satellite imagery using 
state-of-the-art atmospheric correction tools, estimate WQ parameters using bio-optical 
algorithms designed for nearshore waters, and compare the results with in situ measurements. 
We then use the range of in situ WQ values as input to simulate inherent optical properties 
(IOPs) and water reflectance and observe how WQ changes lead to changes in water reflectance 
spectra; this allows us to interpret the challenges related to WQ retrieval in the study area and 
provide recommendations for how WQ monitoring of small inland waterbodies can be improved. 
 
3.2 Methods 
 
3.2.1 Field and satellite data 
 
We selected the lower South Nation watershed for this study because its wider waterways, 
compared to the upstream tributaries, are more suitable for satellite observations. This can 
provide an indicator for changes occurring across the entire watershed. In addition, we surveyed 
a section of the Ottawa River, which is wider, less turbid, and contains lower levels of organic 
matter than the South Nation River (Fig. 3.1). The study design allowed us to evaluate the 
performance of remote sensing-derived water quality products across different aquatic 
ecosystems. 
 
Between August and October 2023, six field campaigns resulted in the collection of 119 in situ 
reflectance spectra, coinciding with 10 satellite overpasses from Sentinel 2A (S2A), Sentinel 2B 
(S2B), Landsat 8 (L8), and Landsat 9 (L9) (Table 3.1). Additionally, Agriculture and Agri-Food 
Canada supported the collection of 52 sonde measurements at four hydrologically distinct sites 
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over a period of 13 cloud-free days from May to October 2023, also timed with satellite 
overpasses (Table 3.2). The locations of these measurements are shown in Fig. 3.1. 
 

 
Fig. 3.1. Locations of in situ water quality and reflectance data collected in the South Nation River and the 
Ottawa River in 2023. Each star represents a water-quality site visited once during each of the 13 cloud-free 
satellite overpass days. 
 
Table 3.1. Satellite overpasses with coincident in situ reflectance measurements in 2023. 
Date Overpass 
August 06 S2A, L9 
August 23 S2A, L8 
August 28 S2B 
August 31 S2B, L9 
September 5 S2A 
October 02 S2A, L9 
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Table 3.2. Satellite overpasses with coincident in situ water quality measurements in 2023. 
Date Overpass 
May 25 S2A 
May 28 S2A 
June 22 S2B 
July 12 S2B 
July 19 S2B 
July 24 S2A 
August 16 S2A 
August 31 S2B, L9 
September 05 S2A 
September 15 S2A, L8 
September 20 S2B 
September 22 S2A 
September 27 S2B 

 
Remote sensing reflectance (𝑅*$), the ratio of upwelling radiance (𝐿.) to downwelling irradiance 
(𝐸(), was measured with a dual-channel Jaz spectrometer deployed from a small boat. The 𝐸( 
sensor was mounted on a pole above the passengers, while the 𝐿. sensor was enclosed within a 
cone with a diameter of 7.5 cm. The base of the cone was submerged 3 cm below the water 
surface to eliminate specular reflectance and ensure that the measurements reflect only the 
optical properties of the water’s constituents (Lee et al., 2013). To minimize shading effects from 
the boat, the 𝐿. sensor was always positioned between the boat and the sun during 
measurements. The sensors were calibrated using seven Spectralon reflectance standards from 
Labsphere, with reflectance values of 5 %, 10 %, 18 %, 50 %, 80 %, 94 %, and 99 %. For each 
standard, at least five measurements were taken under illumination conditions similar to those at 
the study sites. A regression line was fitted to the scatterplot of the ratio of the digital numbers of 
𝐿. to 𝐸( against reflectance for each wavelength, and wavelengths with an R2 > 0.98 were 
retained, generally ranging from 350 to 930 nm. The spectral resolution of the sensors is 
approximately 0.3 nm. Unlike some reflectance units, 𝑅*$ accounts for observation angle 
variability and is relatively robust under varying illumination conditions (Mobley, 2020). Water-
leaving reflectance (𝑅0) was calculated as 𝑅*$ ∙ 𝜋, assuming water-leaving radiance is isotropic. 
Correction for anisotropic BRDF was not considered in this study as such process is still under 
development for inland waters. In situ reflectance values were convolved to match the 
multispectral bands of the satellite sensors using the sensors’ spectral response functions.  
 
WQ data were collected using a YSI-EXO3 sonde, which measured parameters including 
chlorophyll-a (Chl-a) in relative fluorescence units (RFU), fluorescent dissolved organic matter 
(fDOM) in quinine sulfate units (QSU), and turbidity in Formazin Nephelometric units (FNU). 
Following the manufacturer’s user manual, Chl-a in RFU was converted to concentrations in 
μg/L by multiplying by 4.02, assuming a measurement temperature of approximately 20 degrees 
Celsius (YSI, n.d.). fDOM in QSU was converted to absorption of coloured dissolved organic 
matter at 340 nm, aCDOM (340 nm) (m-1), by multiplying by 0.2, a coefficient obtained in waters 
from Barnegat Bay and Chincoteague Bay on the East Coast of the US (Oestreich et al., 2016); 
aCDOM (340 nm) (m-1) was then converted to aCDOM (440 nm) (m-1) using an exponential decay 
function with a spectral slope of 0.0161 nm-1, the mean value of samples from Lake Erie 
(Binding et al., 2008).  
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3.2.2 Atmospheric correction 
 
ACOLITE (Vanhellemont and Ruddick, 2018; Vanhellemont, 2019b) version 20231023.0 was 
used to derive water-leaving reflectance from satellite imagery, both with and without AE 
correction using T-Mart version 2.4.5 (Wu et al., 2024). T-Mart uses MERRA2 ancillary data 
(Global Modeling and Assimilation Office, 2015b) to characterize the optical properties of the 
atmosphere, which includes aerosol optical thickness at 550 nm (AOT550), and then calculates 
the point-spread functions of the atmosphere and convolves the satellite imagery to perform AE 
correction in one band at a time. Detailed descriptions of ACOLITE and T-Mart can be found in 
the methods section of Chapter 2.  
 
The default settings in both tools were used, with the following modifications:  

• For ACOLITE, glint removal (Harmel et al., 2018) and NASA atmospheric ancillary data 
(OBPG, 2023) were enabled; the negative-𝑅0 filter was disabled to capture sensor-noise-
affected low reflectance.  

• For both tools, the threshold for the non-water mask using TOA reflectance at 1600 nm 
was increased from 0.0215 to 0.05, as the default value leads to a large number of water 
pixels falsely flagged as non-water in the study area. 

 
3.2.3 Water quality retrieval 
 
The calculations of all WQ-retrieval algorithms are listed in Table 3, in which negative 𝑅0 
values were excluded in the calculations as they do not have a physical meaning. Methods from 
Gilerson et al. (2010) and Gons et al. (2008) were used to derive Chl-a concentrations. The 
Gilerson et al. (2010) approach uses the red-edge to red band ratio, and in a comparison study 
(Pahlevan et al., 2021), it achieved the best performance for inland water observations across 
multiple AC processors. The Gons et al. (2008) approach, another widely used method, was 
calibrated using samples from the Great Lakes and was also implemented in this study; this 
method uses three bands in total: in addition to the two bands used by Gilerson et al. (2010) it 
uses the 783 nm band to estimate the backscattering coefficient (𝑏'). 
 
Nechad et al. (2016) recalibrated the semi-empirical single-band turbidity-estimation algorithm 
originally proposed by Nechad et al. (2009) using a wide range of in situ measurements for S2 
and L8 bands; the bands achieving best results for the S2 MultiSpectral Instrument (MSI) at 783 
nm, and for the L8 Operational Land Imager (OLI) at 865 nm, in Nechad et al. (2016) were used 
in this study to estimate turbidity. In addition, an MSI band with slightly worse results in Nechad 
et al. (2016), at 705 nm, which achieved an R2 of 0.918 (compared to 0.923 for 783 nm), was 
used in this study as this band was less affected by the AE in the study area.  
 
An algorithm that uses the red-to-green band ratio, calibrated by Mabit et al. (2022) for MSI and 
OLI, was used to derive aCDOM (440 nm). Using reflectance from ACOLITE as input, it achieved 
unbiased satellite-based CDOM retrieval at the estuary and Gulf of St. Lawrence and eastern 
James Bay, Canada (Mabit et al., 2022), and has also been proven to perform well at the global 
scale for waters high in CDOM (Jiang et al., 2022).  
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Table 3.3. Water quality retrieval algorithms. 
WQ variable Algorithm Equation 

Chl-a 

Gilerson et al. (2010b) Chl-a (μg/L) = "35.75 ∙ #!(%&'	)*)
#!(,,-	)*)

− 19.3+
...0-

 

Gons et al. (2008) 
Chl-a (μg/L) = "#!(%&'	)*)

#!(,,-	)*)
∙ ,0.7 + 𝑏120 − 0.4 − 𝑏1

..&,+ /0.016 

where 𝑏1 = 1.61 ∙ 𝑅3(783	nm)/,0.082 − 0.6 ∙ 𝑅3(783	nm)0 

Turbidity 

Nechad et al. (2016) 
705 nm Turbidity (FNU) = 416.32 ∙ #!(%&'	)*)

.4#!(%&'	)*)/&..6%'
 

Nechad et al. (2016) 
recommended band 

Turbidity (FNU)= 1587.80 ∙ #!(%67	)*)
.4#!(%67	)*)/&.0&'7

 for MSI 

Turbidity (FNU)= 3031.75 ∙ #!(6,'	)*)
.4#!(6,'	)*)/&.0..-

 for OLI 

CDOM Mabit et al. (2022) aCDOM (440 nm) (m-1) = 20 ∙ log.& "
#!(,,-	)*)
#!(',&	)*)

+ 1+
..6

 

 
To test the impact of removing additional nearshore effects — such as shallow water, submerged 
plants, sub-pixel mixing, and residual AE — on derived spectra and WQ parameters, the water-
quality-measurement locations, where coincident satellite-derived reflectance was extracted, 
were shifted to areas where water pixels are visually homogeneous towards the midlines of the 
rivers (Fig. 3.2). The shifts were slightly over 100 m for all sites except Plantagenet. At the 
Plantagenet site, where the measurements were taken from a bridge spanning a narrow 
waterway, the location was shifted downstream instead. Statistics for matchups with and without 
the shifting were calculated against the same in situ WQ measurements (Section 3.2.4). 
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Fig. 3.2. Shifted water-quality-measurement locations to test the impact of residual nearshore effects. 
 
3.2.4 Performance metrics 
 
Root mean squared error (RMSE), symmetric signed percentage bias (𝛽), and median symmetric 
accuracy (𝜀) were calculated for satellite-derived 𝑅0, following the steps in Chapter 2. RMSE 
was calculated for each of the WQ parameters.  
 
3.2.5 Forward modelling 
 
To investigate how variations of WQ parameters in the range of in situ measurements affect the 
magnitude and spectral shape of 𝑅0, and to help interpret the accuracy of retrieved WQ 
products, we implemented an IOP model provided by Bi et al. (2023). The IOP model was 
calibrated by, and validated against, a wide variety of oceanic, coastal, and inland water samples. 
The code is available at https://github.com/bishun945/IOPmodel. The model takes as input 
aCDOM (440 nm) and concentrations of Chl-a and suspended particulate matter (SPM), and it 
outputs spectral absorption and scattering coefficients. 
 
The median and standard deviation (SD) of WQ parameters from all in situ measurements were 
calculated. IOPs were then determined for each WQ parameter with values set at the median ± 2 
SD, while keeping the other two parameters fixed at their median concentrations. This allowed 
us to demonstrate the variations in 𝑅0 caused by changes in the concentration of each WQ 
parameter individually, given the values of the other two parameters but without accounting for 
interactions between all three parameters. A generic case-2 water phytoplankton community 
composition was used in the IOP model as the actual phytoplankton composition was unknown; 

https://github.com/bishun945/IOPmodel
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a sensitivity test showed that this has a negligible impact on the 𝑅0 spectra at the relevant 
concentrations. The IOP model requires SPM in g/m3 instead of turbidity in FNU as input. The 
conversion was done by simply substituting the unit and using the same numerical values. These 
two values can vary by up to 10 % depending on the study area (Nechad et al., 2016), a 
difference considered acceptable for the purposes of the present modeling. 
 
Following Bi et al. (2023), the IOPs calculated by the model were used to simulate 𝑅*$ through 
formulas proposed by Lee et al. (2011). This is a simplified radiative transfer method for fast 
processing, as the purpose of the exercise is only to demonstrate the magnitude of variations. 
Full radiative transfer models, such as HydroLight (Hedley and Mobley, 2019), can be used 
when higher accuracy is required. Lastly, 𝑅*$ was converted to 𝑅0 by multiplying by 𝜋, 
assuming isotropic distribution of the water-leaving radiation.   
 

3.3 Results  
 
3.3.1 Atmospheric correction 
 
With T-Mart AE correction, ACOLITE produced 𝑅0 values with an RMSE no greater than 
0.0124 across all bands (Table 3.4). Regardless of AE correction, reflectance at 560, 664, and 
705 nm achieved almost unbiased retrievals. Reflectance in other bands in the 400-900 nm range 
was overestimated (Fig. 3.3). 
 

 
Fig. 3.3. Performance metrics without and with adjacency-effect correction, grouped by wavelength. Bands at 
705, 740, 783, and 835 nm belong to Sentinel-2 MSI matchups, and the other bands are shared by Landsat and 
Sentinel-2. Statistics for different sensors are averaged, weighted by the sample size.  
 
Overall, AE correction improved ACOLITE-derived 𝑅0, lowering the sum of RMSE across the 
examined nine bands by 30.4 % (Table 3.4). On average, RMSE was reduced by 16.7 %, 𝛽 was 
reduced by 38.3 %, and 𝜀 was reduced by 23.8 % (Table 3.4). AE correction led to significant 
improvements in red-edge and near-infrared (NIR) bands, but also to slightly worse retrieval for 
the two blue bands. Overall, overestimation in longer-wavelength bands was reduced, improving 
the overall spectral shapes of retrieved reflectance. 
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Table 3.4. Same as Fig. 3.3 but presenting the numerical values and the percentage reductions. 
Positive/Negative reduction indicates improved/reduced performance, respectively. Reductions greater than 
30% are in bold. 

Band RMSE  𝛽 (%)  𝜀 (%) 
Without With % reduction  Without With % reduction  Without With % reduction 

443 nm 0.0082 0.0098 -18.7  269.1 319.7 -18.8  269.1 319.7 -18.8 
490 nm 0.0068 0.0078 -15.0  76.2 87.5 -14.8  80.7 88.3 -9.4 
560 nm 0.0073 0.0074 -1.2  26.9 25.0 6.8  29.8 27.8 6.6 
664 nm 0.0064 0.0067 -4.5  -5.0 1.7 66.3  16.8 14.9 11.4 
705 nm 0.0079 0.0079 0.3  13.9 8.4 39.6  17.4 12.9 26.0 
740 nm 0.0191 0.0099 48.3  354.5 178.8 49.6  354.5 178.8 49.6 
780 nm 0.0233 0.0124 46.9  508.4 270.4 46.8  508.4 270.4 46.8 
833 nm 0.0214 0.0113 47.4  686.3 329.5 52.0  686.3 329.5 52.0 
865 nm 0.0194 0.0104 46.5  1234.8 618.1 49.9  1234.8 618.1 49.9 

 
The distribution of satellite-derived 𝑅0 against in situ values (Fig. 3.4) was similar to those 
described in Chapter 2 (Fig. 2.7), which used in situ values from the GLORIA database 
(Lehmann et al., 2023). The biggest difference was in the 443 nm band — the range of in situ 
reflectance in this band in this chapter was significantly lower than the one from GLORIA (0–
0.01 vs. 0–0.085).  
 

 
Fig. 3.4. Satellite-derived water-leaving reflectance compared with in situ values, without and with adjacency-
effect correction. Points are coloured by sensor. 
 
With AE correction, ACOLITE-estimated AOT550 was lowered from a median of 0.230 to 0.165, 
and thus less overestimated compared to the MERRA2 median value of 0.095 (Fig. 3.5).  
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Fig. 3.5. Comparison of ACOLITE-derived and MERRA2 AOT550 values. Shapes indicate types of aerosol 
models. One data point (MERRA2: 0.24, ACOLITE: 0.91) is excluded from the plot, for which AE correction 
had little impact because very few pixels were identified as water in that scene and AE correction was only 
applied to water pixels.  
 
3.3.2 Water quality retrieval 
 
The input to bio-optical algorithms, satellite-derived 𝑅0 spectra, were extracted at the four water 
quality measurement sites (Fig. 3.6). The four sites can be divided into two groups: Du Moulin 
Park and Wendover sites along the Ottawa River, and Jessup’s Falls and Plantagenet along the 
South Nation River. Satellite-derived reflectance exhibited greater variation at the two South 
Nation River sites compared to the two Ottawa River sites (Fig. 3.6). A few retrieved reflectance 
values at the Ottawa River sites deviated significantly from the spectral shapes of natural waters, 
exhibiting unusually high reflectance in the red-edge and NIR bands. These anomalies were 
largely associated with instances of high AOTs.  
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Fig. 3.6. Satellite-derived water-leaving reflectance at four water-quality sites, used as input to bio-optical 
algorithms, alongside coincident in situ water quality measurements. Shaded areas indicate the interquartile 
range of in situ reflectance for each river. Lines are coloured by MERRA2 AOT550 values at the time of image 
acquisition.  
 
An overview of the performance of WQ-retrieval algorithms is provided in Table 3.5. Compared 
to ACOLITE-only retrievals, AE correction benefited all WQ retrievals except those based on 
the Nechad et al. (2016) approach using the 705 nm band. For Chl-a retrieval, RMSE was 
reduced with AE correction for both approaches, from 87.2 to 59.7 μg/L (Gilerson et al., 2010) 
and from 93.5 to 74.4 μg/L (Gons et al., 2008). For turbidity retrieval, AE correction reduced the 
RMSE from 61.3 to 43.2 FNU (Nechad et al., 2016) using the 783 and 865 nm bands, while the 
approach using the 705 nm band achieved a very low RMSE of 4.9–7.1 FNU across the three 
atmospheric correction scenarios. For aCDOM (440 nm) retrieval, AE correction reduced the 
RMSE from 1.78 to 1.48 m-1. When using the shifted locations for matchups, accuracy for Chl-a 
retrievals was improved, especially following the Gilerson et al. (2010) approach, achieving an 
RMSE of 30.0 μg/L, and aCDOM (440 nm) retrieval was improved to 1.26 m-1. 
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Table 3.5. Overview of water-quality-retrieval algorithms and their performances. RMSE values were not 
calculated for CDOM retrievals due to multiple-conversion uncertainties (Section 3.2.1). Methods in bold are 
plotted in Fig. 3.7. 

  Chlorophyll-a  Turbidity  CDOM 

  Method Gilerson et 
al. (2010) 

Gons et al. 
(2008) 

 Nechad et al. 
(2016) 

Nechad et al. 
(2016) 

 Mabit et al. 
(2022) 

 Band(s) 664 nm, 705 
nm 

664nm, 705 
nm, 783 nm 

 705 nm 
783 nm 

(MSI), 865 
nm (OLI) 

 560 nm, 664 
nm 

 Sensor MSI only MSI only  MSI only MSI, OLI  MSI, OLI 
 n 52 52  52 60  60 

  In situ range 2.4–87.5 μg/L  1.9–72.4 FNU  
48.9–130.0 

QSU 
2.0–5.2 aCDOM 
(440 nm) (m-1) 

RMSE 

ACOLITE 87.2 93.5  4.9 61.3  1.78 

ACOLITE T-Mart 59.7 74.4  5.4 43.2  1.48 

ACOLITE T-Mart 
shifted locations 30.0 66.9  7.1 43.0  1.26 

 
 
The derived products of selected algorithms, Gilerson et al. (2010), Nechad et al. (2016), and 
Mabit et al. (2022), were plotted against in situ values in Fig. 3.7. 
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Fig. 3.7. Evaluation of satellite-derived water quality parameters against in situ values. Shapes are coloured by 
MERRA2 AOT550 at the time of image acquisition. Grey lines for Chl-a and Turbidity represent 1:1 
relationship.  
 
Turbidity and aCDOM showed good linearity between satellite-derived and in situ measurements, 
and turbidity was well retrieved with most points close to the 1:1 line and slight overestimates on 
high-AOT days (Fig. 3.7). Results for Chl-a were poor, with largely overestimated values 
especially for the two Ottawa River sites (Du Moulin Park and Wendover). The Chl-a values 
were less overestimated in the shifted-matchup-locations scenario, with remaining extreme 
overestimates associated with high AOTs (Fig. 3.7). 
 
AE correction increased satellite-derived aCDOM (440 nm) values, raising the mean from 1.69 to 
1.96 m-1 and the median from 1.59 to 1.97 m-1. The distribution of the aCDOM points was more 
linear for the shifted-matchup-location scenario, suggesting residual nearshore effects on 
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retrieved 𝑅0 outweigh the spatial variation of the variable. Performance of turbidity and CDOM 
retrievals did not vary significantly across sites. 
 
3.3.3 Forward modelling 
 
The median and SD of in situ WQ measurements are listed in Table 3.6, while the variations of 
𝑅0 as a function of WQ changes are plotted in Fig. 3.8. Changes in Chl-a resulted in very small 
spectral changes within the 2 SD range, mostly reflected in the absorption line centred around 
675 nm as well as the increased reflectance beyond 700 nm due to increased particle 
backscattering (Fig. 3.8a). It should be noted that sun-induced Chl-a fluorescence was not 
included in the modelling, which would lead to an increase in modelled water reflectance around 
700 nm at high Chl-a concentrations. In contrast, changes in SPM concentration led to significant 
changes across the entire visible-NIR spectrum in both magnitude and shape (Fig. 3.8b), and 
changes in aCDOM caused moderate spectral changes at wavelengths shorter than 700 nm (Fig. 
3.8c). 
 
Table 3.6. Median and SD of in situ WQ measurements. 
  Chl-a (μg/L) SPM (g/m3) aCDOM (440 nm) (m-1) 
Median 4.02 5.27 3.01 
SD 11.28 15.32 1.09 

 

 
Fig. 3.8. Simulated water-leaving reflectance with various concentrations of WQ parameters (median ± 2 SD). 
The grey reflectance spectra correspond to median concentrations: Chl-a at 4.02 μg/L, suspended particulate 
matter at 5.27 g/m3, and aCDOM (440 nm) at 3.01 m-1. Grey vertical bands indicate spectral ranges of sensor 
bands used for calculating satellite-derived values.  
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3.4 Discussion  
 
3.4.1 Atmospheric correction 
 
With AE correction, ACOLITE achieved satisfactory accuracy in the derived 𝑅0, with an RMSE 
no greater than 0.0124 across all bands (Table 3.4). The community validation database used in 
the ACIX-Aqua atmospheric correction inter-comparison (Pahlevan et al., 2021) includes 𝑅0 
mostly from a diverse range of freshwater ecosystems; in the excise, ACOLITE achieved the 
best performance among 8 atmospheric correction processors in terms of RMSE, which was 
0.0224, 0.0196, 0.0197, 0.0147, 0.0139, 0.0168, and 0.0168 for bands at 443, 490, 560, 664, 705, 
740, and 783 nm respectively (Pahlevan et al., 2021). The RMSE achieved in this study using 
ACOLITE, with AE correction, was better than RMSE validated against the community 
validation database in all bands (Table 3.4), yet still with non-negligible bias as high as 618 % 
for low-reflectance bands. The extreme overestimation was likely due to extremely low 
reflectance, e.g., near 0 at 865 nm (Fig. 3.4), potentially shallow-water bottom effects, floating 
plant parts captured by satellite sensors, and incomplete AE correction due to violation of 
assumptions such as the vertical structure of trees on the shores. 
 
AE correction improved or had a negligible effect on all bands except the two blue bands (Fig. 
3.3 and Table 3.4). The overestimation of satellite-derived 𝑅0 at 443 nm persisted with AE 
correction but was negligible at offshore sites (Fig. 3.6). Potential reasons for this increase 
include errors in estimated atmospheric pressure and sky glint during atmospheric correction, 
sensor calibrations issues, and the 60 m resolution of MSI Band 1 which makes it more 
susceptible to sub-pixel mixing than the other bands. 
 
In addition, the self-shading effect inherent in the skylight-blocked approach was not corrected 
for in the collected 𝑅0. This effect lowers measured water reflectance, particularly in high-
absorption bands. Applying a correction for this effect could significantly increase measured in 
situ water reflectance in the high-absorption blue and NIR bands, potentially improving the 
statistics of the currently overestimated satellite-derived water reflectance, both with and without 
AE correction (Fig. 3.4). 
 
With AE correction, the median ACOLITE-estimated AOT550 was 28 % lower (Fig. 3.5) than 
values without AE correction. ACOLITE is known to overestimate AOT (Vanhellemont and 
Ruddick, 2018), likely to compensate for the AE and other factors. The overestimation was 
reduced from 142 % to 73 % compared to MERRA2 values after applying AE correction. This 
improvement brings the AOT estimates used in aquatic remote sensing closer to the values in 
climatology models, contributing to more unified observations across aquatic and atmospheric 
domains.  
 
3.4.2 Water quality retrieval 
 
The variations in the accuracy of WQ retrievals (Table 3.5 and Fig. 3.7) can be explained by the 
simulated 𝑅0 spectra as a function of WQ changes (Fig. 3.8). For Chl-a, both Gilerson et al. 
(2010) and Gons et al. (2008) approaches should in theory be able to detect the variation of 
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chlorophyll absorption, using the 664 nm and 705 nm bands; however, this is challenging due to 
the noise from atmospheric correction (Fig. 3.4 and Fig. 3.6) as well as the wide bandwidths. 
MSI has full-width-half-maximum band widths of 30 and 15 nm for the 664 and 705 nm bands, 
respectively (ESA, 2015), these may be too broad to resolve the Chl-a absorption band at ~675 
nm. In addition, at the longer wavelengths around 750-800 nm where Chl-a variations also 
influence the 𝑅0 spectrum, the modelled impact of Chl-a variations on 𝑅0 was smaller (~0.001, 
see Fig. 3.8) compared to the RMSE values for these bands (~0.01, see Fig. 3.3) by an order of 
magnitude. We likely need narrow-band or even hyperspectral sensors to capture fine spectral 
features between 600 and 800 nm to accurately derive Chl-a in environments similar to the study 
area (Fig. 3.8a). 
 
AE correction improved the retrieval of Chl-a in the study area (Table 3.5). While the 𝑅0 RMSE 
for the 664 and 705-nm bands, the main input to the Chl-a algorithms, were not significantly 
improved by AE correction. 𝛽 and 𝜀 showed noticeable improvement (Table 3.4), suggesting 
reduced bias or improved spectral shape may have improved the Chl-a retrieval. It should be 
noted that the fluorescence-based in situ Chl-a measurements suffer from uncertainties too. A 
more rigorous assessment of the accuracy of satellite-derived Chl-a requires lab techniques such 
as in-vitro fluorescence or high-performance liquid chromatography.  
 
Changes in turbidity were well retrieved using the 705-nm band (Table 3.5 and Fig. 3.7), 
achieving an RMSE of 4.9 within the range of 1.9–72.4 FNU, very likely due to the sensitivity of 
the water spectra to turbidity variations in the study area (Fig. 3.8b). The 705-nm band did not 
benefit significantly from AE correction, which is reflected both in the evaluated spectral 
statistics (Fig. 3.3 and Table 3.4) and the retrieved WQ (Table 3.5). However, in situations when 
SPM is higher, such as over 200 g/m3, the 705-nm band saturates and responds to concentration 
changes less linearly, and the longer-wavelength bands should instead be used to estimate SPM 
and turbidity (Shen et al., 2010). In such cases, AE correction could be important given 
significantly improved 𝑅0 retrievals in these bands with AE correction. 
 
Spectral changes in response to CDOM variations are smooth and span a wide spectrum in 
visible wavelengths (Fig. 3.8c), supporting the findings of Mabit et al. (2022) that the wide 
multispectral bands of high-spatial-resolution sensors, specifically the red and green bands of 
MSI and OLI, can be used to retrieve aCDOM (440 nm). This aligns with the clear linear 
relationship observed between satellite-derived and in situ values (Fig. 3.7), highlighting the 
potential for monitoring CDOM in the study area. The linear relationship was even stronger with 
shifted matchup locations, despite the potential risk of spatial CDOM heterogeneity, suggesting 
that residual nearshore effects on atmospheric correction may play a more significant role in 
aCDOM retrieval than algorithm development or improved spectral resolution. These residual 
nearshore effects, including shallow water, submerged plants, sub-pixel mixing, and residual AE, 
particularly in the visible wavelengths, should be addressed to enhance CDOM monitoring in 
environments similar to the study area. Additionally, a multi-band approach could reduce the 
impact of sensor random noise (Ibrahim et al., 2019), while machine-learning techniques may 
prove useful in areas where residual nearshore effects persist consistently. However, all these 
strategies require further evaluation due to the lack of direct in situ aCDOM measurements in this 
study. 
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3.5 Conclusion  
 
A total of 119 in situ reflectance spectra and 63 sonde measurements of water quality parameters, 
coinciding with 10 Sentinel-2 and 16 Landsat 8/9 overpasses, were collected between May and 
October 2023 in the South Nation and Ottawa rivers of Ontario, Canada. Satellite-derived 𝑅0 
and WQ parameters were compared with in situ measurements to assess the potential for 
satellite-based WQ monitoring in these rivers, which run through largely agricultural landscapes. 
In the study area, T-Mart AE correction improved ACOLITE-retrieved 𝑅0 for all visible-NIR 
bands except two blue bands with low 𝑅0 values. Overall, AE correction lowered the sum of 
RMSE of ACOLITE-derived 𝑅0 by 30.4 %, enabling ACOLITE to achieve an RMSE of 𝑅0 no 
greater than 0.0124 across the visible-NIR spectrum; bias was low for wavelengths where water-
leaving reflectance was high but can be non-negligible in low-reflectance bands, potentially due 
to the uncorrected self-shading effect inherent in in situ reflectance data collected through the 
skylight-blocked approach. 
 
AE correction improved Chl-a retrieval, which, however, remained poor, achieving an RMSE of 
30.0 for values ranging from 2.4 to 87.5 μg/L in the best scenario. AE correction also improved 
the retrieval of turbidity using bands recommended by Nechad et al. (2016). However, the best 
result with an RMSE of 5 within a range of 2–72 FNU was achieved using the 705 nm band, 
which did not benefit from AE correction in this study. AE correction may be important for more 
turbid waters, such as when SPM > 200 g/m3. For CDOM, a strong linearity was found between 
satellite-derived and in situ values; a direct comparison of satellite-derived and in situ 
measurements is needed to further validate the retrievals. 
 
Given the errors in satellite-derived water reflectance (Fig. 3.4 and Table 3.4), better atmospheric 
correction and sensor calibration, coupled with more in situ validation, are likely needed to 
improve the retrieval of the three WQ products. Accurate retrieval of aCDOM may require 
improved atmospheric correction in visible wavelengths. Satellite-based retrieval of Chl-a is 
especially challenging due to the small spectral change in response to Chl-a variations; its 
accurate retrieval may require hyperspectral sensors with high signal-to-noise ratios, especially 
in wavelengths between 600 and 800 nm where 𝑅0 is most sensitive to changes in Chl-a 
concentration in optically complex waters. 
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Conclusion 
 
This thesis comprises three chapters that address the problem of the adjacency effect (AE) in 
nearshore aquatic remote sensing. In Chapter 1, we introduced a three-dimensional radiative 
transfer model designed for AE modelling, named T-Mart. The model uses molecular and 
aerosol profiles from 6S (Wilson, 2013) and supports arbitrary topography. The chapter details 
the characterization of the optical properties of the surface and the atmosphere and how radiative 
quantities are calculated through a Monte Carlo approach. The accuracy of the model was 
validated against libRadtran, showing a maximum difference of less than 0.6 % in extreme 
optical settings. Case studies demonstrated the use of T-Mart in investigating the AE in custom 
environments. For example, one case study showed that 83.7 % of the variance in near-infrared 
top-of-atmosphere reflectance of 47 lakes in Minnesota, as observed in a Sentinel-2 scene, could 
be attributed to the AE. In addition, modelled and measured reflectances in the same scene 
aligned closely with each other. 
 
In Chapter 2, we derived a physics-based method for AE correction, building upon the T-Mart 
code. Ancillary data is first used to calculate the optical properties of the atmosphere, which are 
then used to compute the atmospheric point-spread function. A satellite image is convolved, one 
band at a time, and the difference between the convolved and observed reflectances is scaled by 
a factor derived from radiative transfer simulations. The scaled difference is subsequently 
removed from the observed reflectance to correct for the AE.  The performance of AE correction 
was evaluated by deriving water-leaving reflectance from Sentinel-2 and Landsat 8 imagery 
using ACOLITE, POLYMER and l2gen, with and without AE correction, and comparing the 
results to in situ reflectance data from the globally distributed GLORIA dataset (Lehmann et al., 
2023). For matchups within 200 m of shorelines (n = 212), applying AE correction led to an 
average reduction of 16.7 % in root mean squared error (RMSE), 32.4 % in symmetric signed 
percentage bias, and 36.8 % in median symmetric accuracy for the three processors. The 
improvements were most notable in the near-infrared (NIR) range for ACOLITE, in visible 
wavelengths for l2gen, and evenly distributed across the visible-NIR spectrum for POLYMER. 
 
In Chapter 3, we evaluated the accuracy and limitations of optical remote sensing for small rivers 
by comparing satellite-derived water-leaving reflectance and water quality parameters with in 
situ measurements in two small rivers within the lower South Nation River watershed. AE 
correction improved ACOLITE-retrieved water-reflectance retrievals across most bands, except 
for the two bands where water reflectance was negligible. Overall, AE correction reduced the 
sum of RMSE across nine visible-NIR bands by 30.4 %, enabling ACOLITE to achieve an 
RMSE for 𝑅0 no greater than 0.0124. Bias was low for wavelengths with high water-leaving 
reflectance and was non-negligible in bands with low reflectance. While turbidity was well 
retrieved, there is room for improvement in retrieving coloured-dissolved-organic-matter 
(CDOM) absorption and chlorophyll-a concentration (Chl-a). Accurate CDOM absorption may 
require improved atmospheric correction in visible wavelengths, and accurate retrieval of Chl-a 
may require hyperspectral sensors with high signal-to-noise ratios, particularly in the 600–800 
nm range, where water-leaving reflectance is most sensitive to variations in Chl-a concentration 
in optically complex waters. 
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In addition to the AE, nearshore aquatic remote sensing faces various challenges that must be 
addressed to accurately retrieve optically active water quality products. Beyond the need for 
new-generation sensors and rigorous sensor calibration, atmospheric correction poses difficulties 
including the influence of shallow water (Richardson et al., 2024), estimating aerosol optical 
thickness in the presence of non-negligible reflectance in shortwave infrared bands (Houskeeper 
and Hooker, 2023), sun glint (Kay et al., 2009), spatial variations in atmospheric pressure and 
Rayleigh scattering  (Gilerson et al., 2022), the intricate polarization states of radiation at the 
water surface (Foster and Gilerson, 2016) and below it (Jamet et al., 2019), and sub-pixel mixing 
of plant parts and land reflectance. Furthermore, the proposed AE correction itself has 
limitations, including unaddressed impacts of clouds and spatial variability in observation 
geometry, as well as assumptions of flat, isotropically scattering surfaces and horizontally 
homogeneous atmospheric conditions. Despite these challenges, the open-source and publicly 
available AE modelling and correction software developed in this thesis marks a critical 
advancement in improving the accuracy of aquatic remote sensing in nearshore environments, 
serving as a foundation for more refined methodologies in future research. 
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